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Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component
analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical
artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signals, in
order to find more “interesting” sources than with time-domain ICA, and to more meaningfully sort the
obtained components. The method is especially useful for finding sources of rhythmic activity. Furthermore,
we propose to use a complex mixing matrix to model sources which are spatially extended and have
different phases in different EEG/MEG channels. Simulations with artificial data and experiments on resting-
state MEG demonstrate the utility of the method.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Recently, analysis of brain activity in resting state (Raichle et al.,
2001; Kiviniemi et al., 2003; Beckmann et al., 2005; van de Ven et al.,
2004), or during natural stimulation (Bartels and Zeki, 2004; Hasson
et al., 2004) has attracted a lot of attention. Such experimental
paradigms are a step towards more everyday-life-like recordings
which are not constrained to responses to overly simplistic stimuli or
tasks. However, in these experiments the computational or statistical
analysis of the data is very challenging because there is no simple
stimulus sequence to which the measured activity can be compared
(correlated). Therefore, unsupervised or exploratory analysis meth-
ods have to be used.

Independent component analysis (ICA) and other blind source
separation methods have been successfully applied for separating
spatially independent sources in functional magnetic resonance
imaging (fMRI) data measured in resting state (Beckmann et al.,
2005; van de Ven et al., 2004) or during natural stimulation (Bartels
and Zeki, 2004). However, the application of ICA on spontaneous
electroencephalography (EEG) or magnetoencephalography (MEG)
does not seem to be straightforward, and only few studies have
successfully separated sources of spontaneous brain activity with ICA.
Typically, ICA is very successful in finding artifacts (Jung et al., 2000;
ience, P.O. Box 68, FIN-00014

rinen).
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Vigário et al., 2000), but less successful in finding components related
to brain activity.

We think that the main reason for this problem is that ICA
essentially finds the components whose amplitudes have the most
non-Gaussian distributions, while the interesting sources in EEG/MEG
are often not very far from Gaussian. Consider amplitude-modulated
oscillatory activity as illustrated in Fig. 1. The amplitude distribution
of the modulated sinusoid is determined by two conflicting
properties. On the one hand, the amplitude distribution of the
underlying oscillation (a sinusoid) has a strongly negative kurtosis
(−1.5) since its histogram is bimodal. When such a distribution is
modulated, it moves towards sparseness (Beale and Mallows, 1959),
i.e. its kurtosis increases. However, when a negative kurtosis
increases, it actually gets closer to zero and thus the distribution
becomes more Gaussian, as is shown in the histogram of a modulated
signal in Fig. 1d. Themodulation has to be quite strong in order for the
modulated signal to display a strong degree of non-Gaussianity: even
the rather strong modulation shown in Fig. 1e does not produce a
large kurtosis (only 1.47 in this case).

Since ICA algorithms can be interpreted as maximizing the non-
Gaussianity of the components, they are biased towards finding
artifacts. This seems to explain why it is difficult to find oscilla-
tory components with basic ICA, although such components are
usually the main target of investigation in studies of spontaneous
EEG/MEG.

Even if the degree of non-Gaussianity of oscillatory sources were
strong enough for their separation by basic ICA, artifacts tend to be
even more non-Gaussian. This is a problem because the number of
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Fig. 1. Illustration of amplitude-modulation of a sinusoid and its effect on the non-Gaussianity of the sources. (a) A sinusoid, whose kurtosis is ≈−1.5. (b) An envelope which
modulates the oscillation in a. (c) The resulting modulated oscillation, i.e. a multiplied by b. (d) The amplitude histogram of the modulated signal in c. It is not very non-Gaussian,
which is reflected in its (normalized) kurtosis which equals −0.51. (e) An envelope which has stronger fluctuations than the one in b. (f) The resulting modulated oscillation, i.e. a
multiplied by e. (g) The histogram of the more strongly modulated signal in e. It is somewhat more non-Gaussian, which is reflected in its (normalized) kurtosis which is 1.47.
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independent components that needs to be estimated to recover
oscillatory components can be quite large. Thus, we still need a
method for selecting, among the many components estimated by ICA,
the interesting ones, i.e. those related to brain activity. Non-
Gaussianity would not be informative regarding the “interestingness”
of the components. In fact, many blind source separation algorithms
can be interpreted as finding sources which maximize some measure
of “interestingness”, and therefore separation of components and
ranking them are essentially two viewpoints on the same problem:
how to define a useful measure of “interestingness” which is also a
valid separation criterion. Ideally, having a properly defined separa-
tion criterion, we can estimate just a subset of components which
maximize the criterion of separation or interestingness, and sort the
components by the value of the separation criterion, thus solving the
separation and sorting problems at the same time.

Another problem with straightforward application of ICA to
spontaneous EEG/MEG is that it assumes that each oscillatory source
is observed in all the channels at the same phase (or with π radian
phase shift, corresponding to just flipping the sign of the signal).
While this is true for a single current dipole source, it would be
interesting to find sources which are spatially more distributed. Such
sources could consist of several dipoles whose time courses are closely
correlated but with small time differences. They would presumably be
seen in the different channels with constant phase differences; i.e. the
oscillations in the different channels would be phase-locked but
would not have the same phase. Basic ICA would split such sources
into several components, while it would be useful to have them
grouped in a single component.

Here, we propose a new method of blind source separation based
on a measure of interestingness which is maximized by amplitude-
modulated oscillatory activity, and allows for constant phase-
differences in the oscillation. The method is based on the following
three ingredients: (1) we use short-time Fourier transforms of the
data to probe oscillatory activity, (2) we use a complex mixing matrix
to model different phases in spatially extended sources and (3) the
analysis is performed using the complex-valued version of FastICA
with a robust measure of non-Gaussianity (Bingham and Hyvärinen,
2000).



1 Our model is, however, not equivalent to the complex-valued ICA model because
the sources cannot be considered strictly independent in general. This is because of the
influence of the frequency which is a sampling index in this representation. We can
construct the following counterexample in which the original sources are independent
but the transformed ones are not. Take two statistically independent narrow-band
oscillatory sources s1 and s2 with the same peak frequency (say, 10 Hz). The short-
time Fourier transforms have peaks in the same places, i.e. for the same combinations
of the indices t and f. Thus, if we compute the covariance of the absolutes values of the
s ̂1 and s ̂2, i.e. 1

TF

P
tf j ŝ1 j js ̂2 j − 1

TF

P
tf js1̂ j 1

TF

P
tf j ŝ2 j , this covariance is positive. This is

in contradiction with independence, because for independent random variables, any
nonlinear transformations are uncorrelated. Fortunately, this dependence seems to be
weak, and does not seem to be significant in practice. Furthermore, this dependence
can be considered as an artifact of our Fourier representation in which f is considered
as a sampling index.
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Model

ICA of short-time Fourier transformed data

We start by assuming a linear instantaneous mixing model like in
ordinary ICA. Denote by xc,τ the measured data where c is the
channel index and τ is the time index. Each channel is assumed to be
a linear superposition of underlying source signals (independent
components) sp

xc;τ =
XP
p=1

ac;psp;τ ð1Þ

The sources are assumed to be statistically independent stochastic
processes.

We propose to transform the EEG/MEG data in a very simple way:
take short time-windows of the data, and replace each window by its
Fourier transform. For regularly spaced time indices tτ, we take
windows (xc,tτ, xc,tτ+1,…,xc,tτ+w−1) where w is the size of the
temporal window. We compute the Fourier transform for each such
window, and basically replace the original data window with the
Fourier transform; the precise definition of such replacement will be
given in what follows.

This approach leads to data with the following three indices:

• c is the channel index, as above
• t is the index of the window, i.e. the temporal location within the
experiments (with a lower temporal resolution than τ)

• f is the index of the Fourier transform coefficient inside the short
time window.

The maximum values for the indices are denoted by C, T, F,
respectively.

An important point is that in spite of the three indices we consider
the data as an ordinary two-dimensional matrix in which each row
(corresponding to a given channel c) contains the data for all the
possible values of the t and f indices. Thus, our Fourier-transformed
data consists of a matrix x̂c;tf , c=1…C, t=1,…,T, f=1…F. The fact
that we collapse the t and f indices together is indicated by the lack of
comma between the indices. In other words, we do not treat the
transformed data as a three-dimensional object in the spirit of three-
way data analysis methods (Miwakeichi et al., 2004); instead, we
concatenate the short-time Fourier transforms one after the other, so
we still have a two-dimensional data matrix.

A fundamental property of the linear mixing model in Eq. (1) is
that our transformation of the data does not in any way change the
mixing model. This is a general property of linear time-filtering and
similar transformations of the data (Hyvärinen et al., 2001). Thus, we
have the following model for the Fourier-transformed data:

x ̂c;tf =
XP
p=1

ac;pŝp;tf ð2Þ

where the ac,p are the same mixing parameters as in Eq. (1), and the
ŝp;tf are random coefficients, like in most source separation methods.
Again, the ŝp;tf are considered as a two-dimensional matrix so that the
combined index tf replaces the time index τ in the original data. This
means simply that their short-time Fourier transforms are concate-
nated one after the other.

Note that the data x ̂ are complex-valued by the conventional
definition of the Fourier transform. The mixing coefficient ac,p are
real-valued here, but below we will further propose that the mixing
coefficient are also allowed to take complex values to extend the
linear mixing model.

The model in Eq. (2) is quite similar to a complex-valued ICA
model, whose estimation has been considered in the source
separation literature.1 For example, a variant of FastICA was proposed
by (Bingham and Hyvärinen, 2000). In the following, we call this ICA
of short-time Fourier transforms “Fourier-ICA” for short.

Sparseness and oscillatory activity

The important point here is that after the short-time Fourier
transformation, the principles of ICA estimation can be interpreted in
a new light. One interpretation of ICA estimation is that it maximizes
the non-Gaussianity of the sources; for most sources (those which
are super-Gaussian or sparse) this means maximization of the
sparseness.

What does sparseness mean for our transformed data? In fact, it
means two different things, both of which are in line with our goal of
finding sources of oscillatory activity:

(1) Few frequency bands with non-zero energy. If the Fourier
coefficients are zero for most frequency bands, then the
distribution of the Fourier coefficients (taken over all frequencies
and windows) is sparse.

(2) Amplitude-modulation of signals. It is well known (Beale and
Mallows, 1959), and illustrated in Fig. 1, that amplitude
modulation of signals increases sparseness of the original
signal. It also increases the sparseness for each single frequency
band in the short-time Fourier transform, because the
amplitude-modulation of the signals modulates the Fourier
transforms as well (at least if it is slow enough so that the
short-time Fourier spectrum is not significantly smeared by the
modulation).

Thus, sparseness of the Fourier coefficients is a meaningful
objective if we want to separate oscillatory signals, or if we want to
find the most interesting sources among the separated ones.

Further, this means that the objective functionwhichmeasures the
“interestingness” of the source is given by the theory of ICA
estimation, here the complex-valued case. We use the following
objective function proposed by Bingham and Hyvärinen (2000):

J ŝp
� �

=
1
TF

X
t;f

−log 1 + j ŝp;tf j2
� �

ð3Þ

which can be interpreted as a measure of sparseness which is not
sensitive to outliers. As we will see in the experiments below, it is
important to use a measure of non-Gaussianity which is robust
against outliers instead of, for example, the more classic kurtosis
measure. The measure in Eq. (3) is robust, i.e. insensitive to outliers,
because the logarithmic function does not grow fast when going far
from zero, as opposed to the fourth power used in kurtosis. Here, it is
assumed that the ŝp is standardized to zero mean and unit variance.
Maximization of this measure, and estimation of the complex-valued
ICA model are simultaneously performed by the complex-valued
FastICA algorithm (Bingham and Hyvärinen, 2000).
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Weemphasizehere thatdefiningagoodmeasureof “interestingness”
is important to solve one practical problem in the application of ICA: the
method can give a large number of components, and it may be time-
consuming for the researcher to go through all of them to find the useful
components. If our objective function really corresponds to the
interestingness of the components in our application, we can do two
things: first, we can estimate a smaller number of components than the
dimension of the data (even smaller than the dimension after PCA);
second, we can rank the estimated components according to the
objective function, and thus suggest which components should be
considered for further analysis. We will see the utility of both of these
ideas in the simulations below.

In contrast to basic ICA, our method uses information on the
temporal correlations of the sources. A number of blind source
separation methods have been developed based on such correlations
(Belouchrani et al., 1997; Ziehe and Müller, 1998; Hyvärinen et al.,
2001). Those methods can also separate Gaussian sources. However,
they have the serious drawback that they cannot separate sources if at
least two of the sources have identical temporal correlation structure,
i.e. the same Fourier spectra.2 This is why their direct application to
spontaneous EEG/MEG seems weakly justified. In the analysis of
spontaneous EEG/MEG, blind source separation methods (see
Experiments below) typically find several sources with the same
spectral characteristics, which implies that methods based on
temporal correlations alone cannot be expected to yield any original
sources in such a case, only arbitrary mixtures of such spectrally
identical sources.

In contrast, our method combines temporal correlations (narrow-
band characteristic) with amplitude modulations to provide a
separation method which can further separate spectrally identical
sources. Thus, it attempts to combine the best properties of source
separation methods based on non-Gaussianity and temporal correla-
tions. In the Appendix, we provide a mathematical analysis of Fourier-
ICA and show, in particular, that it can separate even Gaussian sources
based on their temporal correlations alone.

Modelling phase differences by complex-valued mixing

We further propose that the coefficients ac,p are allowed to take
complex values. The meaning of such a complex-valued model is that
a source with index p can be observed in the channels with different
phases, which are given by the phases of ac,p for different c, as will be
explained next.

Assume that in our original mixing model in Eq. (1), the source
oscillations are recorded in different channels with delays δ(c,p)
which are small with respect to the period of the oscillation:

xc;τ =
XP
p=1

ac;pŝp;τ−δ c;pð Þ ð4Þ

We emphasize that we do not model delays due to the propagation
of the signals, since such delays are extremely small. Instead, our
goal is to model spatially extended sources of rhythmic activity, or
distributed sources consisting of multiple focal sources with
constant phase relations. Such sources (which could also be called
networks) may result in oscillations with slightly different phases
in different channels, if different parts of the source have phase-
locked activity but with time differences. We do not propose a
biophysical mechanism of how such phase differences arise, but
our experiments reported below give some support to such a signal
model.
2 Note that by the well-known Wiener-Khinchin theorem, if two signals have
identical Fourier power spectra, then they also have identical temporal correlations
structure (i.e. identical autocorrelation function), and vice versa. Strictly speaking, the
theorem applies to stationary processes only.
It is well known in the theory of Fourier analysis that the Fourier
transform of a lagged signal sτ–n is obtained by multiplication by a
function of modulus one:

ŝτ−n fð Þ = ŝτ fð Þexp 2π in fð Þ ð5Þ

Furthermore, we assume that the sources are quite localized in the
Fourier space, i.e., narrow-band. Then, the dependence of exp(2π in f)
on f has little effect because we have

ŝτ fð Þexpð2π in fÞ≈ŝτ fð Þexpð2π in f0Þ ð6Þ

where f0 is the dominant frequency of an oscillatory source s(τ).
When we take the short-time Fourier transform of the lagged mixing
model in Eq. (4), we thus have

x ̂c;tf =
XP
p=1

ac;pexp 2π if0 pð Þδ c; pð Þð Þŝp;tf ð7Þ

Here, we can combine the original real-valued mixing coefficients ac,p
and the new terms exp(2π if0(p)δ(c,p)) as new complex-valued
mixing coefficients, denote them by a'c,p. Thus, the mixing model in
the Fourier domain in Eq. (2) can be approximated by a model which
is formally exactly the same as Eq. (2), but the mixing coefficients ac,p
are complex-valued.

It should be emphasized that this approximation is only valid for
narrow-band sources. In the general case, we would need a separate
phase parameter for each frequency band (Anemüller et al., 2003),
which would greatly increase the number of parameters in the model
(10-fold even if we only had 10 frequency bands), and thus make its
estimation more difficult. Since most sources of interest in spontane-
ous EEG/MEG are relatively narrow-band, this approximation seems
reasonable, and it has the benefit of keeping the number of
parameters quite low.

As we can see in Eq. (7), the magnitudes of the complex-valued
mixing coefficients a'c,p are the same as those of the original
coefficients ac,p since exp(2πif0(p)δ(c,p)) has modulus one and only
changes the phase (argument) of the complex coefficient.

As is well known in the theory of ICA, the global phase or
magnitude of a component cannot be estimated in the model. This is
because we can always multiply any source ŝp by a scalar constant qp,
and divide the coefficients ac,p by the same qp, and the observed data
are not changed in any way. Thus, all the estimated magnitudes and
phases of each source are only defined relative to each other, i.e. we
can only estimate the phase differences between ac,p and ac',p, or their
relative magnitudes.

Reliability analysis

It is also useful, although not necessary, to incorporate in the
method an algorithmic reliability analysis as in Himberg et al. (2004).
The estimation is repeated many times for each data set, using either
different random samples of time windows or different random initial
points, or both. This allows an analysis of the reliability of the
estimates: a minimum requirement for a component to be reliable is
that it is obtained in (almost) all these randomized runs.3 If a
component is obtained only a few times, it may be an algorithmic
artifact, possibly a small local maximum of the objective function, or a
purely random effect due to a small sample size. It is important to
investigate this possibility when one uses data-analysis algorithms
based on maximization of complicated objective functions, since
function maximization can be very difficult and unreliable.
3 This rather primitive quantification of reliability is the best that we have in the
theory of ICA so far. Hopefully, future research will provide methods which quantify
reliability in a more principled manner, for example, in terms of statistical significance
(p-values). See (Groppe et al., 2009) for related work.
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Simulations and experiments

We applied the method on three different kinds of simulated data,
as well as on real MEG data.

General methods

To make the simulations as realistic as possible, we processed the
simulated data almost exactly the same way as the real MEG data. The
hypothetical “sampling frequency” in the simulations was 150 Hz,
which was the sampling frequency of the real MEG data after some
preprocessing independent of the present method.

All datasets were processed by the following steps:

(1) The data were downsampled to 75 Hz using Matlab's decimate
function which includes an interpolation.

(2) Windows of a duration of 1 second were taken, half over-
lapping (i.e. with an interval of 0.5 s between the starting
points of the windows).

(3) A Fast Fourier transform (FFT) was performed on each window.
Only coefficients in the range from 5 Hz to 30 Hz were retained,
i.e. the data were effectively band-pass filtered.

(4) Outliers were rejected by computing the logarithms of the
norms of each FFT-transformed window, and rejecting any
window whose log-norm was larger than the mean plus three
standard deviations. (This was only done with real MEG data.)

(5) The means of the Fourier-transformed channels were sub-
tracted to make all signals zero-mean.

(6) The dimension of the datawas reduced by principal component
analysis (PCA) to 25, except in simulations 1 and 2, where no
dimension reduction was performed because the initial data
dimension was smaller than 25. The choice of this dimension
was rather ad hoc, obtained by trying out a few different values
in pilot experiments.
Fig. 2. The six simulated source signals used to compare different objective functions. Left: th
sample index and Hz, respectively; units on vertical scale are arbitrary. The first three source
carrier frequencies of 10, 10, and 20 Hz. The latter three source signals resemble artifacts: a l
strong Gaussian noise, respectively.
(7) Fourier-ICA was performed using the complex-valued FastICA
algorithm (Bingham and Hyvärinen, 2000) with the objective
function in Eq. (3). The number of components estimated was
typically smaller than the PCA dimension.

As part of the FastICA algorithms, the data are whitened; however,
we do not consider that a part of the preprocessing but rather a part of
the estimation method itself.

For comparison, we also applied the ordinary (time-domain)
FastICA algorithm on the datasets (Hyvärinen, 1999). In this case,
steps 2 and 3 above were omitted. As a replacement to the band-pass
filtering in step 3, we performed a corresponding time-domain filtering
of the data. Outliers were detected in step 4 in each 1-s window.

Simulation 1: validation of objective function

In the first simulation, we compared Fourier-ICA with basic (time-
domain) ICA using artificial data, and evaluated the effect of using
robust vs. non-robust non-Gaussianity measures.

Methods
We synthetized three source signals which resemble rhythmic

activity, and another three source signals which resemble artifacts
encountered in MEG data. The source signals had a length of 10,000
time points, and they are shown in Fig. 2. They were preprocessed as
described above.

We computed the values of the robust objective function of
Fourier-ICA, in Eq. (3), of these source signals. Before the computation,
each source signal was preprocessed as described above (steps 1–6).
For comparison, we computed the values of objective functions of
basic (time-domain) ICA, using the objective functions of the formP

t G stð Þ where the sum is taken in the time-domain only.
Two different forms of Gwere used: First, the function Gwas set to

the (negative) log cosh function, which is used in FastICA (Hyvärinen,
e original signals in time domain. Right: their Fourier amplitudes. Horizontal scales are
signals are amplitude-modulated band-pass signals resembling brain oscillations, with
arge spike artifact, several spikes, and a muscular artifact consisting of a short period of
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1999)with the nonlinearity “tanh” aswell as in the infomax algorithm
(Amari et al., 1996; Bell and Sejnowski, 1995). Second, we set G to be
the fourth power, which is equivalent to using kurtosis in FastICA
(Hyvärinen and Oja, 1997). This choice corresponds to the nonline-
arity “pow3” or third power, and is also used in a number of other
source separation methods including JADE (joint approximate
diagonalization of eigenmatrices) by Cardoso and Souloumiac
(1993). Furthermore, we computed the kurtosis of the Fourier-
transformed data, which is also a valid objective function in complex
ICA. In all these computations, the preprocessed source signals were
normalized to unit variance.

Since the maximization of ICA objective functions is computation-
ally quite difficult, the computed values of the objective function do
not strictly determine the actual behaviour of source separation
algorithms. This is why we made source separation simulations with
the corresponding four algorithms (Fourier-ICA using robust objective
or kurtosis, and time-domain FastICA with tanh or kurtosis/pow3)
using the different objective functions. For this purpose, we mixed
these signals with random (real-valued, normally distributed)
coefficients ac,p, and then applied the four algorithms on the mixed
data. To have amore reliable assessment of the algorithms, we also re-
generated the random parts (noise, and locations of artifact spikes) of
the source signals, as well as the mixing coefficients, and re-ran the
algorithms 100 times. The algorithms were told to find three source
signals (with the largest values of the objective function). The results
were analyzed by considering the product of the estimated separating
matrix and the true mixing matrix, normalizing each row of this
matrix to unit norm, and counting the number elements in the matrix
which were larger than 0.95 in absolute value; this we considered the
number of source signals successfully separated.

Results and discussion
The values of the objective functions are shown in Fig. 3. We can

see that for Fourier-ICA using the robust measure in Eq. (3), the
oscillatory (“brain”) source signals have larger values of the objective
function as compared to the artifactual signals. In contrast, for the
basic (time-domain) ICA objective functions, the artifactual signals
take larger values, which is also the case for Fourier-ICA using
kurtosis. Thus, our proposed objective function is able to better
indicate which source signals are likely to be oscillatory: oscillatory
Fig. 3. Simulation 1: the values of the objective functions for Fourier-ICA vs. FastICA and
robust vs. non-robust sparseness measures. F-ICA/rbst: Fourier-ICA with robust
measure in Eq. (3), F-ICA/kurt: Fourier-ICA with kurtosis, ICA/rbst: ICA with
nonlinearity tanh, ICA/kurt: ICA with kurtosis. For each method, the three black bars
give the objective function values for the brain source signals and the three white bars
give the values for the artifactual source signals. Source signals are in the same order as
in Fig. 2. The actual scale is different for each method, but since the actual values do not
matter, the values for each method have been rescaled to a common scale from 0.1
(smallest value for the method) to 1 (largest value for the method).
signals have relatively higher values of the robust objective function
(higher sparseness) than artifactual signals. In contrast, kurtosis is
quite sensitive to artifacts even in the Fourier domain.

The results of the corresponding source separation simulations are
summarized in Fig. 4.We see that Fourier-ICA using Eq. (3) quite often
found oscillatory brain signals (243 out of the maximum possible 300,
or 77%), whereas the time-domain methods preferred artifactual
signals, finding approximately 17% and 11% of brain signals. The
performance of Fourier-ICA based on kurtosis was between these two
cases. Thus, also on a practical level, our new method seems to be
efficient in finding the oscillatory brain signals and ignoring artifacts.

The performance is not 100%, but in practice one can run the
algorithmmany times to circumvent this problem, as explained in the
Model section. Alternatively, one can estimate the full set of
independent components and then use the objective function to
sort them; results in Fig. 3 suggest that in this case the performance
would be close to 100%.

Simulation 2: modelling phase differences by complex-valued mixing

In simulation 2, we investigated the utility of using a complex-
valued mixing matrix to recover source signals when the sources are
distributed, leading to phase differences (delays).

Methods
We used the three oscillatory source signals in simulation 1,

depicted as the three first source signals in Fig. 2.
First, a real-valued random 3×3 mixing matrix was generated

from normally distributed variables. Then, a 3×3 matrix of delays
were randomly generated by uniformly sampling integer delays
between 0 and 7. The maximum delay of 7 samples corresponds to
93 ms which is close to the period of the 10-Hz oscillations, i.e.
100 ms. Again, the length of the signals was 10,000 time points.

The data were preprocessed as in General Methods. Source
separation was performed by Fourier-ICA using the robust measure
in Eq. (3) in two conditions: estimating a real-valued mixing matrix,
or a complex-valued one.

The evaluation of separation is a bit more involved because the
algorithm gives phases as complex numbers whereas the data were
generated using a real-valued mixing matrix with delays. Thus, we
Fig. 4. Simulation 1: separation results for Fourier-ICA using robust objective in Eq. (3)
or kurtosis, and FastICA with the nonlinearities tanh and pow3 (i.e. kurtosis). The bars
show the numbers of brain components and artifact components found over 100
repetitions. Note that the algorithm was told to find only three components in each
trial. Blue: Fourier-ICA using the robust objective function in Eq. (3). Cyan: Fourier-ICA
with kurtosis. Yellow: Basic (time-domain) ICA with tanh. Red: Basic ICA with kurtosis
(pow3).



4 http://www.tsi.enst.fr/cardoso/stuff.html.
5 In fact, FastICA with kurtosis often failed to converge, which sometimes happens

when the data are very far from the specifications of the ICA model.
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cannot directly compare the estimated mixing matrix with the original
one. A simple way of comparing the mixing matrices is to compare the
absolute values of the estimated and original mixing matrices, ignoring
the comparison of estimated phases vs. original delays, which is not
straightforward. Thus, we computed the product of the inverse of the
absolute values of the estimated mixing matrix with the absolute
values of the original mixing matrix. This should be close to a
permutation matrix if separation is successful, and the closeness to a
permutation matrix can be quantified as in ordinary blind source
separation trials: We used the same method as in simulation 1 to
compute the number of successfully separated components.

Furthermore, we computed the correlation coefficients of the
estimated source signals and original source signals in the Fourier
domain. These correlation coefficients tell us how well the source
signals themselves were estimated. Again, we thresholded their
absolute values as in simulation 1 to compute the number of
separated components.

Results and discussion
Based on the absolute values in the mixing matrix, the percentage

of correctly estimated components was 85% in the case of a complex-
valued mixing model, and 42% in the case of a real-valued one. Using
the evaluation based on correlation coefficients, the percentages were
93% and 34%, respectively.

Thus, using a complex-valued mixing matrix greatly enhanced the
separation capability in the case of distributed source signals. The
separation capability was not 100% presumably because modelling
delays with a complex-valued mixing matrix is only an approximation.
Some of the errors are, of course, due to the finite data length as well.

Simulation 3: oscillatory current dipoles and real MEG noise

In simulation 3, we mimicked measurements from an MEG device.
Brain sources were simulated by a set of current dipoles, and real
noise was added.

Methods
We simulated data from a 306-channel MEG device (Elekta

Neuromag Oy, Helsinki, Finland) comprising 102 magnetometers and
204 planar gradiometers in a helmet-shaped array. A standard forward
model with a spherical volume conductor was used (Sarvas, 1987).
Three cortical current dipoles were defined as follows: The time
courses were oscillations at constant frequencies, amplitudemodulated
by different smoothed boxcar functions. Before modulation, Gaussian
noise was added to the boxcar functionwith a signal-to-noise ratio of 1.
The locations (approximate) and frequencies of the dipoles were: the
right sensorimotor cortex at 10Hz, the left sensorimotor cortex at 19Hz
and the right visual cortex at 10 Hz. The length of the simulated data
was 120 s, and the sampling rate was 150 Hz.

To obtain realistic noise, 120 s of data measured from the empty
magnetically shielded room with the 306-channel MEG device was
added on the signals generated by the simulated current dipoles with
a signal-to-noise ratio of 1.

The reliability analysis was done according to the ICASSO
framework (Himberg et al., 2004) (simulations 1 and 2 included no
reliability analysis because in completely artificial data all compo-
nents are usually reliable). The default settings were used except that
we used the complete-linkage strategy in the hierarchical clustering.
The reliable components were selected using the stability index Iq
defined by Himberg et al. (2004). It is an index between 0 and 1which
measures the reliability of a component. In our experiment with real
MEG data, only components for which this index was larger than 0.75
were included in the analysis.

The components considered reliable by the randomization were
finally sorted (ranked) according to the values of the corresponding
objective function, large values first.
To visualize the time courses of the sources, we computed the
norm of the source in each 1-s window. We also computed the
average Fourier spectra of each source by averaging across time
windows. To visualize the spatial distribution of the sources, we
computed the sum of squares of the real and imaginary parts of the
ac,p corresponding to the two orthogonal planar gradiometer channels
in the same spatial location. This gives a measure of the spatial
“weight” of a source in a given sensor location, and we plot it on a
topographic helmet. All these quantities are in arbitrary units since
each component can only be estimated up to a global scaling factor
(Hyvärinen et al., 2001).

Since Fourier-ICA with kurtosis had poor performance in simula-
tion 1, we did not consider it anymore. We only used Fourier-ICA with
the robust measure of non-Gaussianity. As above, we used for
comparison, basic ICA with the two nonlinearities (tanh and
kurtosis/pow3). Since the data dimension is large even after PCA,
and one of our goals is to reduce the number of estimated components
by concentrating on the most interesting ones, the number of
components to be estimated was set to 5.

To further compare with other ICA algorithms than FastICA, we
applied the JADE algorithm (Cardoso and Souloumiac, 1993) to the
same Fourier-transformed data, using a complex-valued mixing
matrix. To compare with source separation methods based on
temporal correlations, we applied the SOBI (second-order blind
identification) blind source separation method (Belouchrani et al.,
1997) on the data (without Fourier transform), with real-valued
mixing matrix, and 500 time lags. These two methods do not allow
separation of a smaller number of components, so we had to estimate
a full set of 25 components and develop a criterion for choosing the
most “interesting” ones. For JADE, we used kurtosis, since the method
is based on higher-order cumulants. For SOBI, we used the sum of
squares of autocorrelations of a source, which is a relatively heuristic
measure of the total amount of temporal structure in a source. No
reliability analysis was performed because these methods are
deterministic (at least in the authors' implementation, which we
used here4).

Results and discussion
The results for the different algorithms (Fourier-ICA, basic ICAwith

tanh, basic ICA with kurtosis, Fourier-ICA with JADE, SOBI) are shown
in Figs. 5–9. The reliability analysis found four reliable sources.
Fourier-ICA found the three sources corresponding to the simulated
current dipoles and ranked them as the first three, showing that the
method found exactly what it was supposed to. ICA with tanh found
only one of the current dipoles and failed to rank even that one as the
first one. ICA with kurtosis found none of the current dipoles.5

Fourier-ICA using JADE instead of FastICA was also successful in
finding all the three oscillatory components. SOBI found one of the
oscillatory components but was not able to separate the 10-Hz
oscillations from each other, as predicted by the theory of second-
order separation discussed above. (Here we show the four signals
ranked most interesting; we give the same number of signals as the
reliability analysis indicated with the preceding methods.)

All the methods also found a physical artifact of unknown origin,
e.g. signal #4 in Fig. 5.

Thus, the index of interestingness in Fourier-ICA was successful in
both finding and ranking the sources, while basic (time-domain) ICA
was not able to separate most of them properly, and ranking was not
successful either. The performance of SOBI clearly showed the
limitations of methods based on temporal correlations only. Fourier-
ICA with JADE performed equally well as FastICA with the robust
measure in this simulation.

http://www.tsi.enst.fr/cardoso/stuff.html


Fig. 5. Simulation 3: the reliable sources found by Fourier-ICA sorted according to the criterion in Eq. (3). Left: time courses (envelopes), middle: power spectra (starting at 5 Hz),
right: spatial distributions.
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Experiments on real MEG data

Finally, we applied the new method on real resting-state MEG
data.

Methods
The raw data consisted of 5 minutes of the 306 MEG signals

obtained from a healthy volunteer resting eyes closed (Ramkumar et
al., 2007). The subject participated after informed consent, and the
MEG recordings had a prior approval by the Ethics Committee of the
Helsinki and Uusimaa Hospital District. The initial sampling frequency
was 600 Hz. The signal space separation method (Taulu et al., 2004)
Fig. 6. Simulation 3: the reliable sources found by basic ICA and nonlinearity tanh, sorted acc
power spectra, right: spatial distributions.
was used to reduce noise, and the data were downsampled to 150 Hz.
Magnetometer channels were excluded from the analysis due to their
wide-spread lead fields, leaving the 204 planar gradiometer channels.

The data were analyzed as described above in General methods.
The number of estimated components was set to 10; since our goal is
to develop amethodwhich directly finds themost interesting sources,
this numberwas chosen to be significantly smaller than the number of
dimensions after PCA.

Fourier-ICAwith the robust measure was performed on these data.
Again, for comparison, basic (time-domain) ICA was also applied to
the same data, with the two nonlinearities tanh and pow3 (kurtosis),
and for further comparison, SOBI and Fourier-ICA with JADE were
ording to the corresponding objective function. Left: time courses (envelopes), middle:



Fig. 7. Simulation 3: the reliable sources found by basic ICA and kurtosis, sorted according to the values of kurtosis. Left: time courses (envelopes), middle: power spectra, right:
spatial distributions.
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performed. Reliability analysis, sorting of the components, and
visualization were performed as described in simulation 3.

The phase differences were visualized as follows. As noted above,
an important indeterminacy in ICA is that for each source signal, the
global phase cannot be estimated, i.e. each column a.,p is estimated up
to a phase rotation. This is not a problem since we are only interested
in phase differences anyway, but for visualization, we have to fix that
phase rotation for each source signal. Here, we rotate the phases as
close to zero as possible, and thus we can interpret them directly as
the difference from a global average phase. A second problem is that
this approach still gives two phase difference values for each sensor
location (which have two gradiometers each). We choose simply to
plot the one which has the larger absolute value.

Results and discussion
Components found by Fourier-ICA are shown in Figs. 10, 11, and

components found bybasic (time-domain) ICA are shown in Figs. 12, 13.
Based on visual inspection, all components found by Fourier-ICA

seem to be physiologically meaningful and not biological or technical
artifacts. We see two rhythmic mu components (#2 and #3 in Fig. 10,
Fig. 8. Simulation 3: the most “interesting” sources found by Fourier-ICA using JADE instea
middle: power spectra, right: spatial distributions.
and #1 and #4 in Fig. 11) and a number of approximately 10-Hz
components.

Using a complex-valued mixing matrix (Fig. 10) does lead to
recovery of sources which have time lags, as was our hypothesis.
The complex-valued mixing matrix seems to produce “cleaner”
results than using a real-valued mixing matrix (Fig. 11) in the sense
that the source signals correspond to spatially more contiguous
regions. This can be seen by comparing the topographic plots in
Figs. 10 and 11.

Many of the components found by basic ICA seem to be artifacts,
based on visual inspection of their topographic distributions, time
courses, and frequency contents. Some of them are ranked high in
interestingness by their objective function. In fact, among the four
components ranked most interesting (top rows), two seem to be
artifacts (#1 and #2 in Fig. 12 and #1 and #4 in Fig. 13). Only one mu
component seems to be found (#5 in Fig. 12, #7 in Fig. 13).

The JADE ICA algorithm (Fig. 14) failed to clearly separate even both
mu rhythms, instead finding many artifacts. Thus, it seems necessary to
use a robust nonlinearity in the ICA part of Fourier-ICA, whereas JADE is
based on non-robust higher-order cumulants. SOBI (Fig. 15) gave
d of FastICA, sorted according to the values of kurtosis. Left: time courses (envelopes),



Fig. 9. Simulation 3: themost “interesting” sources found by SOBI, sorted according to the amount of temporal structure. Left: time courses (envelopes), middle: power spectra, right:
spatial distributions.
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components which seem to be, based on visual inspection, rather similar
to those of Fourier-ICA. However, the theoretical results and simulation 3
indicate that components with similar spectral contents are not likely to
Fig. 10. Real MEG recording: reliable sources obtained by Fourier-ICA, with a complex mixin
the most “interesting” ones in the top. First column: the time course of the source (envelope)
sources at the topographic sensor helmet. Fourth column: the phase differences of the source
for channel locations in which the magnitude was large.
be successfully separated, and many of the components here have a
spectrum which is almost identical to the spectrum of some other
component (in fact, among the remaining 15 sources not shown here,
g matrix. Each row is one source; the sources are ordered by the objective function, i.e.
. Second column: the Fourier amplitude spectrum. Third column: the magnitudes of the
s. Cyan means zero phase difference (see colour bar). Phase differences are only plotted



Fig. 11. Real MEG recording: the reliable sources obtained by Fourier-ICA, with a real-valued mixing matrix. Left: time courses (envelopes), middle: Fourier spectra, right:
topographic distributions.
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manymore similar spectra are likely to be found). Thus, the results of SOBI
cannot be trusted.

To conclude, Fourier-ICA, when used with a robust measure of
non-Gaussianity, seems to find mainly sources of rhythmic activity,
Fig. 12. Real MEG recording: the reliable sources obtained by basic ICA, with tanh nonl
distributions.
whereas other methods concentrate to a large extent on artifacts. A
different problem prevents the application of SOBI: The basic
statistical assumption allowing separation by SOBI is violated with
this data.
inearity. Left: time courses (envelopes), middle: Fourier spectra, right: topographic



Fig. 13. Real MEG recording: the reliable sources obtained by Basic ICA, with kurtosis. Left: time courses (envelopes), middle: Fourier spectra, right: topographic distributions.
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General discussion

We proposed to apply ICA on the (complex-valued) short-time
Fourier transforms of EEG/MEG. When combined with a robust
measure of non-Gaussianity, the method finds sources which are
maximally narrow-band and/or amplitude-modulated. Simulations
with artificial data and experiments with real MEG data show that
such a method is able to separate sources of rhythmic brain activity
better than basic ICA, or second-order blind source separation
methods. These results are in contrast to most existing literature
which has used ICA merely to remove artifacts from EEG and MEG,
and separation of spontaneous brain activity into source signals has
not been very successful. Moreover, our method provides a principled
way of ranking the components, so that the analyst may not need to
go manually through dozens or even hundreds of components to find
the interesting ones.

It is well known in the theory of ICA that one can apply a wavelet
transform or a related time-frequency decomposition to the data
before ICA. Zibulevsky and Pearlmutter (2001) proposed to perform a
time-frequency decomposition with the specific goal of making the
data and the components sparser. Anemüller et al. (2003) used a
short-time Fourier transform of EEG data in a rather similar
framework to ours, but in the context of evoked potentials. A related
application on fMRI was presented by Anemüller et al. (2006). Further
work on convolutional models for EEG signals is by Dyrholm et al.
(2007). However, application of such methods to improve source
separation in spontaneous EEG/MEG seems to be lacking.

Although ICA, in theory, can separate any independent components
which are mixed according to the assumptions of the model, the
statistical performance with real data is strongly affected by the model
for the signals. Theoretically, such effects could be seen in the
asymptotic variance of the estimators. In practice, such analysis may
not be very relevant because most of the errors in practical analysis
may be due to violations of the model assumptions such as
independence and linearity, and the effect of such violations is quite
difficult to analyze. Intuitively, however, it seems reasonable that if the
signal model is richer, in our case capturing the oscillatory time
structure in addition to the amplitude distribution, the method is likely
to be better in separating sources. Perhaps a more useful way of
analyzing such improvement is to use sophisticated simulations
related to the application domain considered, and real data for
which the expected results are known to some degree. This was our
approach in this article. At the same time, one has to remember that
any separation algorithm is biased towards finding certain kinds of
sources. We have argued here that basic ICA is biased towards signals
with non-Gaussian amplitudes, and thus towards artifacts. Fourier-ICA
is also biased towards certain sources, for example those which are
narrow-band, and this bias has to be kept in mind when interpreting
the results.

Our results on real MEG data suggested that Fourier-ICA is able to
decompose rhythmic brain activity into components in a new way. In
particular, the method recovered a large number of components for
the prominent approximately 10 Hz activity. The significance of such
findings needs to be confirmed by experiments with several subjects.
On the other hand, based on visual inspection, modelling delayswith a
complex mixing matrix seems to improve the results, although such
improvement is hard to quantify since we do not know the ground
truth, i.e. the actual structure of the underlying sources in the real
MEG data. This is another important topic for future research.

Investigations of EEG/MEG recordings in resting state, or with
natural stimulation, have not advanced nearly as much as the
corresponding fMRI analyses. One of the main reasons may have
been the lack of good separation methods. We hope that the method
proposed here is an important step in that direction.

Appendix A. Mathematical analysis of Fourier-ICA

Here, we provide rigorousmathematical analysis on two aspects of
Fourier-ICA: a decomposition of kurtosis which justifies the decom-
position intuitively explained in the Model section, and a rather
suprising theorem which states that the method can separate even
Gaussian sources.



Fig. 14. Real MEG recording: the most interesting sources obtained by Fourier-ICA using JADE instead of FastICA, with a complex mixing matrix. For legend see Fig. 10.
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Decomposition of kurtosis

We assume that the total recording time T is infinite as typical in
analysis of blind source separation methods. Denote by ŝj a random
variable which takes randomly and with equal probability the values
Fig. 15. Real MEG recording: the most interesting sources obtained by SOBI. Left: tim
ŝj;tf , i.e. its expectation is average over t and f. Likewise, denote by ŝj;f a
random variable which takes randomly andwith equal probability the
values ŝj;ft , i.e. its expectation is the average over t with fixed f.

We rescale the components so that var ŝj
� �

= E j ŝj j2
n o

= 1. Now,
consider the kurtosis of ŝj. We use the following definition of kurtosis
e courses (envelopes), middle: Fourier spectra, right: topographic distributions.
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for complex-valued variables with random phase (Bingham and
Hyvärinen, 2000),

kurt zð Þ = E jz j4
n o

− 2 E jz j2
n o� �2

; ð8Þ

where in contrast to real-valued data, we find a coefficient equal to 2
instead of 3. Due to scaling of the ŝj, we have

kurt ŝj
� �

= Et;f j ŝj j4
n o

− 2 ð9Þ

We would like to express this as a function of the frequency-
specific kurtoses ŝj;f . This can be accomplished as

kurt ŝj
� �

=
1
F

X
f

Et j ŝj;f j4
n o

− 2

=
1
F

X
f

Et j ŝj;f j4
n o

− 2 Et j ŝj;f j2
n o2

� �� 	

+
2
F

X
f

Et j ŝj;f j2
n o2

� �
− 2

2
4

3
5

ð10Þ

which can be further expressed as

kurt ŝj
� �

=
1
F

X
f

kurtðŝj;f Þ + 2 varðŝj;f Þ
h i2 − 2 ð11Þ

This equation shows that the “total” kurtosis over t and f can be
decomposed as the average of the kurtoses in each frequency band
plus (two times) the average of the squared variances of the
frequency bands. This corresponds to the two aspects of non-
Gaussianity explained in the main text (Model section).

Gaussian signals: proof of separation

If the sources are Gaussian processes, the first term on the right-
hand side in Eq. (11) is zero. However, the second term is not, and the
kurtosis is not usually zero, as stated in the following Theorem:

Theorem 1. Assume that the sj,τ are Gaussian processes. Then,
kurtðŝjÞ is non-negative, and zero if and only if sj,τ is white noise.

Proof. Consider a fixed j, and denote bf = Et j ŝj;f j2
n o� �2

=
varðŝj;f Þ
� �2. What we need to prove is that g bð Þ = 1

F

P
f b

2
f − 1z0

and with equality if and only if bf is constant for all f. We know
that the constraint 1

F

P
f bf = 1must hold by definition of unit variance

of the transformed sources. The Lagrangian for this constrained
optimization problem gives the condition for extremum as

2
F
b − λ

F
c = 0 ð12Þ

where c is a vector of all ones. This gives the admissible solution
b=c, at which point the function g attains zero. It is geometrically
obvious that this is a minimum, since g is essentially the Euclidean
norm, the constraint set is a simplex, and the extremum is attained at
the centerpoint of the simplex. Thus, for all other values of bf, g(b)N0,
and the Theorem is proven.

It may seem surprising that Gaussian signals can be transformed
into non-Gaussian ones by a linear transformation, since linear
transforms of Gaussian variables are Gaussian. This apparent
contradiction is solvedwhen one realizes that whenwe “concatenate”
the Fourier transforms one after the other, which is equivalent to
summing or averaging over f, the distribution of the transformed
sources ŝj is effectively a mixture of Gaussians. The Gaussian
distributions in the mixture cannot all have the same variances unless
the data is white noise. Such “scale mixtures of Gaussians” are well
known to be non-Gaussian (Beale and Mallows, 1959).

Thus, the kurtoses of the transformed sources can be assumed to be
positive. This would seem to indicate that we can apply any (complex-
valued) non-Gaussianity-based ICA method on the transformed data,
and we would get the original sources. This is not a valid conclusion,
however, because the transformed sources are not independent. This is
because frequency acts as one of the sampling indices. For example, if
we know that one source has a large value for a randomly picked
column in the matrix ŝj;tf , it means that the frequency in that column is
oneof thepreferred frequencies of that source. This givesus information
about the value in that column for another source, assuming we know
its power spectrum. Thus, the value for one source gives information on
the value of another, and statistical independence is violated.

However, in spite of the dependence, ordinary non-Gaussianity-
based ICA methods do separate sources, for example under the
additional conditions of distinct autocorrelations, as we will prove
next. Consider maximization of the following objective function, sum
of kurtoses of the estimated sources:

K Wð Þ =
Xn
j=1

kurt
X
c

wjcx̂c

 !
ð13Þ

where W is the estimate of the inverse of the mixing matrix A. where
the kurtosis is computed using expectation over t and f. The
maximization of such an objective function is essentially what
happens when the Fourier-transformed data is input to kurtosis-
based ICA algorithms (Comon, 1994; Delfosse and Loubaton, 1995;
Hyvärinen and Oja, 1997), since all the kurtoses of the transformed
sources are non-negative according to Theorem 1.

A most interesting mathematical result is the following theorem:

Theorem 2.

Assume the following:

1. The original source signals sj,τ are stationary Gaussian processes.
2. The temporal correlations of the sources are distinct in the following

sense: The matrix of the Fourier energies

mf ;j = Et j ŝj;f j2
n o

ð14Þ

has full column rank. (In particular, this requires that the number
of frequencies F in the Fourier transformmust be equal to or larger
than the number of sources.)

3. The matrixW is constrained so that the
P

c wjcx ̂c are uncorrelated and
of unit variance (as typical in ICA).

Then, the objective function K in Eq. (13) is maximized when the W
equals the inverse of the mixing matrix A, with rows in arbitrary order
and possibly multiplied by −1.

Proof. Consider the linear combination of the Fourier-transformed
data:

P
c wcx ̂c;tf . This is also a linear combination of the original sources

with some coefficients which depend on the mixing matrix.

X
c

wk;cx̂c;tf =
X
j

X
c

wk;cac;j

 !
ŝj;tf =

X
j

qk;j ŝj;tf ð15Þ

where we denote the coefficients in parentheses by qk,j.
We start by decomposing the kurtoses in K as in Eq. (11). Note that

the decomposition is valid for any random variable, and therefore also
for

P
c wcx̂c;tf . The kurtoses of the frequency bands (the first terms)

are zero because the time points in the windows are jointly Gaussian
(Assumption 1 in theorem), and thus any linear transformation of
them is also Gaussian. Thus, we only need to consider the second term
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(the last constant term being immaterial). Transforming the w to the
q as in Eq. (15), we have

K = 2
Xn
j=1

XF
f =1

Et j
X
k

qj;kŝ
2
k;f j

( ) !2

+ const: ð16Þ

By the stationarity part of Assumption 1 of the Theorem, the
covariance of sk,t and sk,t' depends only on t − t′, and the Fourier basis
vectors are the eigenvectors of the covariance matrix of the time
windows. Thus, the coefficients ŝk;f and ŝk;f 0 in the Fourier transform
are uncorrelated for f ≠ f′. This implies

K = 2
XF
f =1

Xn
k=1

Xn
j=1

q2j;kmf ;k

� �2
+ const: ð17Þ

Denote bi,j=q2j,i, and denote by ‖ � ‖2 the square of the Frobenius
norm of the matrix, i.e. the sum of the squares of all the elements. The
objective function can then be expressed in matrix form as

K = 2‖MB‖2 + const: ð18Þ

Now, we can apply the following lemma, which slightly gen-
eralizes the lemma in Hyvärinen and Hurri (2004), which is also
related to Lemma 15 in Comon (1994):

Lemma 1. Consider a n×n matrix B that is doubly stochastic, i.e. the
sums of rows and the sums of columns are all equal to one. Take any F×n
matrixM that has full column rank. Then for the Frobenius norm it holds:

‖MB‖2V‖M‖
2 ð19Þ

with equality if and only if B is a permutation matrix.

Proof of Lemma. According to a theorem by Birkhoff (Horn and
Johnson, 1985), we can represent a doubly stochastic matrix as a finite
convex sum of permutation matrices: B =

P
s αsPs with αs N 0 andP

s αs = 1. The converse also holds. The set of doubly stochastic
matrices is thus a compact convex polygonwith extreme points Ps. On
the other hand, the square of the Frobenius norm ‖MB‖2 is a strictly
convex function of B because ‖ � ‖2 is trivially strictly convex, and the
multiplication (from the left) by M is an injective linear transforma-
tion since M has full column rank. Thus, the maxima are obtained at
the extreme points, i.e. when B is a permutation matrix, which proves
the lemma.

To continue with the proof of the Theorem: In Eq. (18), B is doubly
stochastic since it consists of the squares of an orthogonal matrix by
Assumption 3, and M has full column rank by Assumption 2 of the
Theorem. Applying the Lemma, we see that K is maximized exactly
when B is a permutation matrix. This means that Q=WA is a signed
permutation matrix, and the theorem is proven.

The theorem basically says that even Gaussian sources are
separated by maximization of K. The indeterminacy of the sign is
ubiquitous in source separation. The condition that the source signals
must have distinct temporal correlations is well known in the theory
of blind source separation using temporal correlation, sometimes
called “second-order” source separation (Belouchrani et al., 1997;
Ziehe and Müller, 1998; Hyvärinen et al., 2001).
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