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Perceiving the visual world around us requires the brain to represent the features of stimuli and to categorize the
stimulus based on these features. Incorrect categorization can result either from errors in visual representation or
from errors in processes that lead to categorical choice. To understand the temporal relationship between the
neural signatures of such systematic errors, we recorded whole-scalp magnetoencephalography (MEG) data
from human subjects performing a rapid-scene categorization task. We built scene category decoders based on
(1) spatiotemporally resolved neural activity, (2) spatial envelope (SpEn) image features, and (3) behavioral re-
sponses. Using confusionmatrices, we tracked howwell the pattern of errors from neural decoders could be ex-
plained by SpEn decoders and behavioral errors, over time and across cortical areas. Across the visual cortex and
themedial temporal lobe, we found that both SpEn and behavioral errors explained unique variance in the errors
of neural decoders. Critically, these effects were nearly simultaneous, and most prominent between 100 and
250 ms after stimulus onset. Thus, during rapid-scene categorization, neural processes that ultimately result in
behavioral categorization are simultaneous and co-localizedwith neural processes underlying visual information
representation.

© 2016 Elsevier Inc. All rights reserved.
Keywords:
Scene gist
Timing of visual perception
MEG
Multivariate decoding
Spatial envelope
Confusion matrices
Multiple linear regression
Introduction

Tomake effective decisionswithin the environment, our brainsmust
be able to quickly recognize and comprehend real-world scenes.
Humans are remarkable at rapidly recognizing scene categories from
extremely brief exposure times (b20 ms; Potter, 1976; Fei-Fei et al.,
2002; Greene and Oliva, 2009a; Loschky et al., 2010; Potter et al.,
2014). The holistic semantic information that we can extract from a
scene in such short durations—typically the category label—has come
to be known as scene gist (Oliva and Torralba, 2001; Fei-Fei et al.,
2007), and the behavioral phenomenon is known as scene gist percep-
tion or rapid-scene categorization. However, the computational and
neural basis of rapid-scene categorization is not yet fully understood.

Neuroimaging studies are beginning to uncover the functional roles
of brain areas involved in rapid-scene categorization (Epstein and
Kanwisher, 1998; Epstein et al., 1999; Epstein et al., 2003; Epstein and
Higgins, 2007; Epstein, 2008; Linsley and MacEvoy, 2014). Important
rogram, Rehabilitation Institute
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advances in the analysis of brain imaging data—encoding and decoding
models of brain activity—have helped tease apart specific roles of
cortical areas, resulting in a move from strictly activation-based to
information-based brain mapping (Kriegeskorte et al., 2006; Kay et al.,
2008; Ramkumar et al., 2013; Cecotti et al., 2015). On the one hand,
functional magnetic resonance imaging (fMRI)-based decoding studies
have provided novel insights into scene categorization (MacEvoy and
Epstein, 2009, 2011; Walther et al., 2009, 2011) by elucidating the dis-
tributed patterns of activation of various scene-related regions. On the
other hand, electroencephalography (EEG; e.g., Thorpe et al., 1996;
Vanrullen and Thorpe, 2001; Goffaux et al., 2005; Hansen et al., 2011,
2012; Groen et al., 2013), electrocorticography (ECOG; e.g., Bastin
et al., 2013) and sensor-level magnetoencephalography (MEG; e.g.,
Cichy et al., 2014) studies have revealed the rapid time course of visual
information processing.

However, the temporal relationship between when scene-related
information becomes available and when it becomes useful for behav-
ioral categorization remains elusive. Corroborating human performance
against scene categorization based on visual features of natural scenes
may help to provide insight into that relationship. In particular, the spa-
tial envelope model (SpEn; Oliva and Torralba, 2001), which has been
shown to be diagnostic of global scene properties, such as naturalness,
openness, and depth (Greene and Oliva, 2009b), and also of basic-
level scene categories (Oliva and Torralba, 2006) is a promising
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candidate. Although these studies are informative about the nature of
visual features that the brain might use to represent natural scenes,
they do not interrogate when and where in the brain such information
becomes useful for behavioral rapid-scene categorization (but see Park
et al., 2011 for a study of where in the brain some spatial envelope fea-
tures may be processed).

Temporally decoupling computational steps might be a good first
step to understand this relationship. For instance, representing visual
features, and making categorical judgments based on these representa-
tions have been studied as separate computational phenomena, but
how are they executed temporally? The evidence from behavioral stud-
ies ismixed. Some studies suggest a serial process of gist perception. For
instance, some global scene properties (such as naturalness) are in-
ferred earlier than others (such as depth) (Greene and Oliva, 2009b),
the distinction between natural and man-made scenes is made earlier
than the basic-level scene category (Loschky and Larson, 2010;
Joubert et al., 2007), and increasingly complex percepts (such as de-
scribing the relationships between objects) require increasingly longer
exposure times to scenes (Fei-Fei et al., 2007). Other behavioral studies
suggest a considerable overlap between visual representation and cate-
gory judgment processes due to rapid reaction times to indicate per-
cepts. For instance, saccades made to indicate decisions about objects
or faces are made within 100–130 ms (e.g., Kirchner and Thorpe,
2006; Crouzet et al., 2010). These psychophysical and eye movement
studies provide upper and lower bounds on the time course of visual
processing, but they do not directly quantify visual information process-
ing in the brain.

Here, we investigated the brain–behavior relationship underlying
rapid-scene categorization by askingwhether the early visual represen-
tation of scenes and category judgment are serial processes, or whether
they occur at the same time. The whole-scalp coverage of magnetoen-
cephalography (MEG), its good cortical resolution, and millisecond-
scale temporal resolution make it particularly attractive for describing
rapid-scene categorization phenomena with high spatial and temporal
precision. To track the neural correlates of rapid-scene categorization
over the cortex and in time, we recorded MEG data when subjects per-
formed a rapid-scene categorization task. First, we show that it is possi-
ble to track visual scene information flow in the ventral visual stream
using spatiotemporal maps of decoding accuracy. Next, and crucially,
we describe a network of brain areas whose decoders' errors can be ex-
plained by errors in behavioral responses despite accounting for errors
in image-feature-based decoders. Specifically, we show that the repre-
sentation of low-level visual features and processing that informs be-
havioral choice are not sequential, but co-occur at the same time and
within the same cortical networks.
Materials and methods

Apparatus

Visual stimuli were presentedwith a Panasonic D7700DLP projector
on a back-projection screen placed at 120-cm distance in front of
the subject. The screen resolution was set to 1024 × 768 pixels and
images were presented at the center of the screen with a size of
672 × 672 pixels, resulting in viewing angle of 23.6 × 23.6°.

To track brain function at high temporal resolution, we recorded
MEGdata using a Vectorview system (ElektaOy, Helsinki, Finland) com-
prising 306 channels (204 planar gradiometers, 102 magnetometers)
providing whole-head coverage. Data were sampled at 1000 Hz and fil-
tered at 0.03–330 Hz. We also recorded signals from four coils posi-
tioned around the head to continuously track head position.

Concurrently withMEG data, we acquired eyemovement data using
an SR Eyelink 1000 (SR Research Ltd., Mississauga, Ontario, Canada) in-
frared eye-tracking system (sampled at 1000 Hz) to ensure that our
subjects fixated on the center of the screen.
Scene categorization experiments

We designed a scene categorization experiment in which subjects
had to view a briefly presented grayscale image and report one of six
possible natural scene categories. Three categories were man-made
scenes (airports, cities, or suburbs), and the other three were natural
scenes (coasts, forests, or mountains); see Fig. 1A. Each category com-
prised 30 unique scenes. Although behavioral experiments of rapid-
scene categorization often use visualmasking to limit the duration of in-
formation extraction from the retinal image, we chose to implement an
unmasked task for theMEG scanner becausewewanted tomeasure the
visual response to natural scenes without any influence from the
masking images. In order to ensure that the low task difficulty did not
produce noisy estimates of behavioral performance, we also designed
a masked version of the task to be performed outside the scanner (see
Results, Supplementary Text and Supplementary Figs. S1, S2).

A trial schematic is illustrated in Fig. 1B for the rapid-scene categori-
zation task. Eight healthy volunteers (2 females, mean age 32 years)
were asked to perform a basic-level categorization task using an eye-
gaze-based response interface. Prior written informed consent was ob-
tained from all subjects. MEG and eye movement recordings were ap-
proved by the Ethics Committee of the Helsinki and Uusimaa Hospital
District. Each trial started with the presentation of a fixation point.
After fixating the point for 500 ms, a blank screen appeared for
500 ms, followed by the target image presentation for 33 ms. After the
target image, a blank screen was shown for 750 ms. Subjects then had
to select the category of the previous target image by making an eye
movement to the respective category label and fixating it for 600 ms.
After indicating their choice, the experiment progressed to the next
trial. In order to ensure central fixation for each trial, stimulus presenta-
tion was only initiated when fixation was within ~1° of the fixation
point.

Preprocessing and source modeling

The MEG signal is contaminated by several types of artifacts arising
from eye blinks, facial muscle contractions, head movements, vibra-
tions, and sources of electromagnetic noise in the environment
(Hämäläinen et al., 1993). Temporal signal space separation (tSSS) is a
state-of-the-art technique that separates out contributions to the mea-
surements arising from inside and outside the sphere circumscribed
by the sensors using spherical harmonic functions to describe multipo-
lar contributions to the magnetic field in space (Taulu and Simola,
2006).We used tSSS for artifact rejection and headmovement compen-
sation. We then down-sampled data to 500 Hz and low-pass filtered at
45 Hz to focus on stimulus-evoked responses. We extracted evoked re-
sponses from the continuous data stream around the stimulus onset
events and applied a baseline correction using a time window of
150 ms preceding the stimulus onset. We then used data from a post-
stimulus window of 600 ms for analysis. This interval preceded the dis-
play screen for indicating their category choice, and therefore, eye
movement signals or artifacts did not confound the MEG responses to
scenes.

We projected every single time bin (300 time bins for a 500 Hz sam-
pling rate) for each single trial from MEG sensor space to the cortical
surface using a standard inverse modeling technique, namely mini-
mum-norm estimation (Hämäläinen and Ilmoniemi, 1994) as follows.
First, we reconstructed the cortical surface from single-subject MR im-
ages using a suite of tools that segments gray matter tissue and models
the shape of the cortical surface (http://brainvisa.info/toolboxes.html).
Second, to model each source current as a magnetic current dipole, we
defined a cortically constrained source space with an average spacing
of 5 mm between source vertices, with a current dipole at each vertex.
Third, a boundary-element model was used to compute the forward
model from current sources to measured fields. Finally, we computed
an inverse solution using a standard whitened, depth-weighted linear

http://brainvisa.info/toolboxes.html
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Fig. 1. (A) Examples of the stimuli of all categories. Top panel: man-made categories, viz. airport, city, residential. Bottom panel: natural categories, viz. beach, forest, and mountain.
(B) Trial schematic for the rapid-scene categorization task.

297P. Ramkumar et al. / NeuroImage 134 (2016) 295–304
minimum-norm estimate. The entire inverse modeling was accom-
plished using the Brainstorm software package (Mosher et al., 2005).

Spatiotemporally resolved decoding

Inverse modeling provides us a trial-by-trial estimate of cortical ac-
tivity at each vertex and each time point. From these estimates, we
built decoders of scene category using data from spatiotemporally re-
solved windows. The spatial extent of each window was defined as a
neighborhood of 25nearest neighbors around each source-space vertex,
defined on the tessellated cortical surface. The temporal extent of
each window was 20 ms trailing each time point. For each window
(10 timestamps at 500 Hz sampling rate × 25 vertices = 250 features
per sample), we built linear support vector machine (SVM) decoders
using the LIBSVM package for Matlab (Fan et al., 2008; Chang and Lin,
2011). Decoding accuracies were estimated using 5-fold cross-
validation (train on 144 trials, test on 36 trials for each fold), and 95%
confidence intervals of decoding accuracies were estimated by
bootstrapping over 1000 repeated samples with replacement on the
test set (see e.g., Ramkumar et al. (2013) for methodological details).
Group-level decoding accuracies at each vertex and time pointwere ob-
tained by averaging the single-subject median accuracies, and group-
level CIs were obtained by bootstrapping these median accuracies
across vertices and subjects. We used the bias-corrected approximate
percentilemethod, implemented in theMatlab function bootci.m, to es-
timate uncorrected 99.995% confidence intervals (resulting in an effec-
tive 95% CI after correcting for 1000 comparisons). Given an average of
~100 vertices for each region of interest and 8 subjects, this is a conser-
vative correction for multiple comparisons. Decoding accuracies were
considered significant if the lower bound CIs exceeded the chance
level of one sixth. From the group-level decoding accuracies, we also
computed confusion matrices: a matrix whose (i, j)th entry represents
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the fraction of trials for which category iwas predicted as category j by
theneural decoders (neural confusionmatrices).We then visualized the
time series of decoding accuracies averaged over selected anatomical
regions of interest (ROIs), based on a recent atlas by Klein and
Tourville (2012); see Table 1 for names of our regions of interest.

Decoding scene categories from spatial envelope features

The spatial envelope (SpEn) is a popular candidate model for how
the brain might represent scenes during rapid categorization (Oliva
and Torralba, 2001; Oliva and Torralba, 2006). To study the neural rep-
resentation of low-level visual features, we computed SpEn features
from each image and, using SVMs, decoded scene categories on
their basis. For each stimulus image, we normalized local contrast and
computed the SpEn features using an open source Matlab package
provided by the authors (http://people.csail.mit.edu/torralba/code/
spatialenvelope/). The SpEn features are localized energy spectra ob-
tained by computing the energies of the input image convolved with
Gabor filters at multiple scales and orientations. We precomputed
Gabor filters at 8 orientations and 6 scales in the Fourier domain, multi-
plied each filter with the Fourier transform of the input image, and sub-
sequently inverted the Fourier transform. We divided each filtered
image into a coarse 4 × 4 grid and averaged the Fourier energies across
the pixels in each block of the coarse grid, resulting in 8 × 6 × 4 × 4 =
768 image features. Using these features, we decoded scene categories
using SVMs and computed decoding accuracies and the corresponding
confusion matrices (SpEn confusion matrices).

Regression of confusion matrices

Tounderstandwhen andwhere low-level visual features and behav-
ioral categorization contribute to the pattern of errors in neural de-
coders, we applied a multiple linear regression approach. In particular,
we explain the off-diagonal entries in neural confusionmatrices as a lin-
ear combination of the corresponding entries in the SpEn confusionma-
trices, obtained from SpEn-based decoders and across-subject-averaged
behavioral confusionmatrices, obtained frombehavioral categorization.
For each cortical vertex and temporal window, we thus obtain two re-
gression coefficients: βv and βb, corresponding to visual and behavioral
covariates (see Fig. 2).

By regressing a feature of interest against a variable, we canmeasure
the extent to which the feature can describe the variance using the R2

statistic, given by R2=1− SSres / SStot, where SSres is the sumof squares
of the residual, and SStot is the sample data variance. However, these tra-
ditional regression models do not uniquely quantify the variance ex-
plained by a given feature with respect to other potential features of
interest. For our problem, non-unique variance is the variance of neural
confusions explained by either the SpEn confusions or the behavioral
confusions alone.

Multiple linear regression allows us to selectively measure uniquely
explained variance of a candidate feature by comparing the full model
Table 1
List of regions of interest (ROIs; adapted from Klein and Tourville (2012)) examined for
time-resolved decoding and regression analysis of confusion matrices.

ROI Expansion ROI Expansion

V1 Primary visual cortex aFFG Anterior fusiform gyrus
OP Occipital pole FFS/COS Fusiform/Collateral sulcus
LING Lingual gyrus pFFG Posterior fusiform gyrus
POS Parieto-occipital sulcus aPC Anterior precuneus
CUN Cuneus pPC Posterior precuneus
RSC Retrosplenial cortex TOS Transverse occipital sulcus
PHC Parahippocampal cortex PIT Posterior inferior parietal
PRC Perirhinal cortex VSP Ventral superior parietal
ERC Entorhinal cortex VIP Ventral inferior parietal
OFC Orbitofrontal cortex
comprising all features against a partial model with the feature of inter-
est left out. In our case, unique variance is the variance of neural confu-
sions explained by the SpEn or behavioral confusions after regressing
out the behavioral or SpEn confusions respectively. This can be quanti-
fied using the relative R2 statistic, given by R2relative = R2full − R2partial.

We computed both R2s and relative R2s for SpEn and behavioral con-
fusions for each subject using themedian values of the confusionmatri-
ces. To visualize the time series of these relative R2s in ROIs, we
computed the mean and multiple-comparison corrected bootstrapped
CIs (99.995%) across subjects and vertices within selected ROIs, using
the same bias-corrected approximate percentile method described
above. Note that although we implicitly treat subjects as fixed effects,
the multiple-comparison correction of the mean of these fixed effects
across subjects allows us to compare the distribution of the mean of
the relative R2 statistic against zero, in order to quantify unique ex-
plained variance.

Results

Our goal in this study was to investigate the temporal relationship
between when low-level scene-related information becomes available
and when it becomes useful for behavioral categorization. We
approached this by mapping the cortical processing of scene gist in a
spatially and temporally resolved manner. To this end, we recorded
brain activity when subjects categorized natural scenes after brief pre-
sentations. Using cortically constrained current sources inferred from
MEG recordings, we decoded scene categories. Once we established
that brain activity contained scene category-selective information, we
asked howwell this information could be explained by low-level visual
descriptors of scenes. Thus,wemodeled the pattern of errors in our neu-
ral decoders using decoders built fromvisual features and behavioral re-
ports of scene categories.

Behavioral categorization

We found that subjects were extremely accurate in reporting
categories of natural scenes within the scanner (92.5 ± 4.9%, SD, N =
8 subjects). To ensure that this high performance did not prevent us
from estimating the pattern of errors accurately, we repeated a masked
variant of the categorization task outside the scanner in order to
increase the level of difficulty, on a different set of subjects (see
Supplementary Text, Supplementary Figs. S1, S2). In this version of the
task, subjects were less accurate (64.1 ± 10.7% SD, N = 20 subjects).
The correlation between the off-diagonal entries of the behavioral con-
fusion matrices (Supplementary Fig. S2) between the masked and
unmasked taskswas ρ=0.51 (p b 0.05). This high degree of correlation
between the confusion matrices suggested that even though accuracies
were high within the scanner, the confusion matrices were good esti-
mates of the underlying pattern of errors across scene categories.

Decoding scene categories from source-localized MEG responses

Webuilt decoders of scene category labels from small cortical neigh-
borhoods spanning 25 vertices in short 20-ms timewindows. Although
the decoding accuracieswere low (b25%), theywere significantly above
the chance level of one sixth across several brain regions (Figs. 3 and 4).1

As expected from previous EEG reports of early visual and categorical
processing (e.g., Thorpe et al., 1996; Vanrullen and Thorpe, 2001;
Goffaux et al., 2005), our accuracies rose above chance level as early as
100 ms, and peaked at about 150 ms, primarily in the medial occipital
and temporal cortices of both hemispheres (Fig. 3). Thus, our finding
of early rapid-scene information processing in the brain complements
EEG studies of gist perception from extremely brief exposures.
1 Sincewedecoded braindata at the single trial level, the low accuraciesweremost like-
ly due to the limited number of trials for each scene category.
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Next, we examined specific regions of interest informed by Fig. 3
based on anatomical parcellations of lateral occipital, and medial occip-
ital and temporal cortices. As shown in Fig. 4, on the lateral surface, we
found that scene category information could be decoded from a region
of interest encompassing the transverse occipital sulcus (TOS) that con-
tains the functionally defined occipital place area (OPA) (Nasr et al.,
2011; Epstein and Julian, 2013; Dilks et al., 2013) as well as the ventral
part of the superior parietal cortex (VSP), the posterior part of the infe-
rior parietal cortex (PIP), and the posterior part of the inferior temporal
cortex (PIT) in both hemispheres. Also shown in Fig. 4, on the medial
surfaces of both hemispheres, the following areas were similarly infor-
mative: the primary visual cortex (V1), the occipital pole (OP), the lin-
gual gyrus (LING), the parieto-occipital sulcus (POS), the cuneus
(CUN), the posterior precuneus (pPC), the fusiform or collateral sulcus
(FFS/COS), and the posterior fusiform gyrus (pFFG). Given the selectiv-
ity of the fusiform cortex to faces (Epstein and Kanwisher, 1998), their
involvement in scene category encoding is potentially surprising. How-
ever, a recentmeta-analysis of scene-selective cortical areas (Nasr et al.,
2011) revealed that the parahippocampal place area is localized to parts
of the fusiform gyrus. Perhaps more surprisingly, regions typically im-
plicated in fMRI studies of scene perception (Kravitz et al., 2011; Nasr
et al., 2011; Ranganath and Ritchey, 2012; Park et al., 2014), such as
parahippocampal cortex (PHC), perirhinal cortex (PRC), entorhinal cor-
tex (ERC), and orbitofrontal cortex (OFC) were not found to encode
scene category-selective information, although the retrosplenial cortex
(RSC) in the right hemisphere did seem to encode scene categories. To
summarize, we could decode scene categories from brain areas all
over the dorsal and ventral visual stream, as well as the fusiform cortex,
but not from several medial temporal areas commonly implicated in
scene-selective processing.

Decoding a variable of interest, in this case, categorization of briefly
flashed scenes, from brain activity can selectively inform us that the
brain regions and time windows in question are involved in processing
information related to that variable. To examine how information relat-
ed to the categorical variable is encodedwhile avoiding the high dimen-
sionality of encoding models (e.g., Kay et al., 2008), we studied the
pattern of errors in decodingmodels. A convenient advantage of analyz-
ing errors is that even if decoding accuracies are weak, the pattern of
miscategorizations can be used as a window into brain function.

Simultaneity of visual representation and behavioral categorization

To obtain an understanding of the information in the neural code
that enables scene category decoding, we aimed to distinguish between
brain regions that are involved in primarily representing low-level visu-
al information that is captured by the spatial envelope and brain regions
that are involved in representing alternate visual features, or potentially
in making judgments about the scene category, as represented by be-
havior. We thus examined the pattern of errors in brain decoders in re-
lation to the pattern of errors in SpEn decoders and behavioral reports.
Brain areaswhich are better explained by behavioral confusionmatrices
than SpEn confusion matrices may represent the active synthesis in-
volved in recognizing the scene category from visual representations.
To this end, we attempted to explain the pattern of errors in spatiotem-
porally resolved neural decoders by a linear combination of the pattern
of errors in SpEn decoders and the pattern of errors in behavioral re-
ports of our subjects usingmultiple linear regression of confusionmatri-
ces (see Materials and methods for details).

We found that for amajority of the regions fromwhichwewere able
to decode scene categories, both SpEn and behavioral confusions were
able to explain some variance in the neural confusions (Figs. 5 and 6).
These variances can each be broken down into non-unique and unique
variance (Fig. 5A; red and blue traces show an example ROI). The vari-
ance explained by SpEn confusion matrices in general exceeds the var-
iance explained by behavioral confusion matrices (Fig. 5A; blue bars).
However, the behavioral confusion matrices explain unique variance
that is independent of the variance explained by SpEn confusion matri-
ces (Fig. 5B; all dots lie above the y = x line, indicating that the joint
model does significantly better than the SpEn model). Thus, adding
the behavioral CM as a covariate increases the explained variance, sug-
gesting that the errors in the neural decoder result from both the repre-
sentation of natural scene statistics as modeled by SpEn, and the
behavioral judgment of scene category.

If the behavioral report of a scene category is the outcome of a se-
quential decision-making process,wemight expect the neural encoding
of visual features to precede decision-making based on those features. If
on the other hand, decision-making happens at the same time as visual
encoding, we might expect the respective neural correlates to be more
temporally overlapping. One notable feature of the relative R2s for the
SpEn and behavioral confusions, which speaks to the different predic-
tions of these alternate hypotheses, is their near simultaneous timing
(Fig. 6). Specifically, both account for variance in neural confusions
very early and around the same time range (~100–250 ms after
the stimulus was flashed). We also repeated the regression analyses
with behavioral confusion matrices estimated from the masked
task and found that the results were indistinguishable from the out-
come of analysis with behavioral confusionmatrices within the scanner
(Supplementary Figure S3). Thus, any inferences about unique variance
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explained by behavioral and SpEn error patterns cannot be attributed to
biased or inaccurate estimates of the behavioral confusion matrices.
Thus, the neural correlates of behavioral errors appear as early as the
neural correlates of spatial envelope errors across categories, suggesting
that rapid-scene categorization is comprised of highly parallel sets of
sub-processes. Therefore, neural activity that is relevant to behavioral
choice is temporally simultaneouswith the encoding of low-level visual
features.

Discussion

Westudied the neural basis of rapid-scene categorization in a spatio-
temporally resolved manner. By decoding scene categories from MEG
signals generated when subjects categorized scenes, we showed that
the lateral and medial occipital, parietal, and temporal cortices contain
information about scene gist from 100 to 250 ms after stimulus onset.
To further tease apart whether the encoded information primarily rep-
resented low-level visual information or higher-order features that in-
fluenced behavioral errors, we applied multiple linear regression on
neural confusions using visual (image statistical) and behavioral confu-
sions. The very same regions that represented low-level features could
also explain unique variance in neural confusions that were directly re-
lated to behavioral confusions. Crucially, both visual and behavioral
confusions predicted neural confusions nearly simultaneously, suggest-
ing a temporal overlap in encoding of visual features and processing
that influences behavioral choice.

Earlier studies have shown that category-diagnostic information for
object recognition tasks (e.g., animal or vehicle detection; e.g., Thorpe
et al., 1996; Vanrullen and Thorpe, 2001; Goffaux et al., 2005) is avail-
able in the evoked-EEG response from around 150 ms. Our findings
largely replicate these reports showing that category-selective decoding
activity occurs largely between 100 and 250 ms post-stimulus. Relative
to these studies, our results are novel in two differentways. First, we ex-
plicitly confirm using multiple linear regression that MEG signals con-
tain category-diagnostic information over and above low-level visual
features, which significantly influence behavioral choice. Second, in ad-
dition to identifying the time course of this scene-categorization-
dependent activity, we specifically tie it to several anatomical areas in
the lateral andmedial occipital, parietal, and temporal lobes that are in-
formative of scene category and behavioral choice.

Recent fMRI studies of scene perception have elucidated the func-
tional roles of scene-selective areas such as the retrosplenial cortex
(RSC), the parahippocampal place area (PPA), and the occipital place
area (OPA) (Epstein et al., 2003; Epstein and Higgins, 2007; Epstein,
2008; Kravitz et al., 2011, Walther et al., 2009). Although we did not
functionally localize the OPA and the PPA using a canonical contrast
task such as faces vs. houses or places vs. non-places, the anatomical lo-
cation of the PPA has been reported to lie at the intersection of the me-
dial fusiform gyrus (mFFG) and the collateral sulcus (COS) (Nasr et al.,
2011; Kanwisher and Dilks, 2013). Here, we found category-specific in-
formation in the fusiform sulcus (FFS), as well as the medial fusiform
gyrus (mFFG) and COS. In addition, we found that the transverse occip-
ital sulcus (TOS) (which anatomically overlaps with the OPA; see Nasr
et al., 2011; Dilks et al., 2013), and its neighboring lateral surface ROIs,
SVP, PIP, and PIT, encoded scene category information. Finally, we
found scene category-specific coding to a somewhat lesser extent in
the right RSC. Thus, our results are actually consistent with previous
studies that have identified scene-specific areas. The weaker effect of
scene category coding in RSC with respect to PPA and OPA could poten-
tially be explained by imperfections in source localization to the RSC. In
particular, because of its location right next to the calcarine sulcus (V1)
and the parieto-occipital sulcus, depth-weighting inMEG sourcemodel-
ing (Lin et al., 2006) might attribute the RSC activations to these neigh-
boring sulci. Although absence of clear evidence of scene category
encoding in the RSC cannot be taken as evidence of absence, it is useful
to consider emerging data on the difference between the functional
roles of PPA, OPA, and RSC (Epstein, 2008; Cant and Goodale, 2011;
Epstein and Julian, 2013). Whereas PPA is thought to represent textural
properties, and OPA, contour and shape (Cant and Goodale, 2011), RSC
is thought to be involved in higher cognitive functions such as contextu-
alizing the scene in a broader environment (Epstein, 2008). Such
broader scene contextualization might be outside the scope of gist per-
ception involved in rapid-scene categorization.

Advances in data analyses of neuroimaging experiments have en-
abled us to go beyond activation-based mapping, which simply impli-
cates a certain region in a certain task. Information-based brain
mapping (Kriegeskorte et al., 2006) usingmultivariate decodingmodels
as well as high-dimensional encoding models enable us to specifically
ask what information certain regions are representing at time epochs
of interest that are relevant to the task. Here, we used decoding to
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investigate the spatiotemporal relationship between low-level image
representations and processes related to behavioral categorization. In-
stead of using high-dimensional encodingmodels that suffer from com-
binatorial explosions, we used multiple linear regression of decoding
errors to investigate the specific nature of the information that enables
the decoding of scene categories. This analysis showed that the lower-
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allow us to paint a portrait of the spatiotemporal neural code of scene
categorization processes that is more detailed than any before it.

Although we bring together errors both in behavioral responses and
in visual feature decoders to explain neural confusions, we only consid-
er the spatial envelope feature space. Our primary motivation for using
the SpEn model is the extensive literature showing that it is diagnostic
of global scene properties (Greene and Oliva, 2009b), scene categories
(Oliva and Torralba, 2001), errors (Greene and Oliva, 2009b), and
scene typicality (Ehinger et al., 2011). SpEn features are closely related
to multi-scale Gabor pyramids, which resemble receptive fields in pri-
mary visual cortex (Ringach, 2002) and are therefore better poised to
explain neural confusions in early visual areas. Thus, any variance that
remains unexplained by the SpEn confusion matrices could potentially
be explained by visual decoders that use features encoded by the ven-
tromedial areas (such as V4 and inferior temporal cortices). Indeed,
other studies argue for local phase alignment (Hansen and Loschky,
2013; Loschky et al., 2007; Loschky et al., 2010) and color (Oliva and
Schyns, 2000; Goffaux et al., 2005) as playing important roles in gist
perception. Furthermore, recent studies based on linedrawings and tex-
tural manipulations have challenged the view that spatial envelope sta-
tistics are necessary for scene categorization (Walther et al., 2011;
Walther and Shen, 2013; Choo et al., 2014). Therefore, the question of
what visual features best inform rapid-scene categorization remains
open.

When the visual system arrives at a preconscious perceptual deci-
sion about the scene category, it combines developmental priors with
incoming natural image statistics (Bar, 2004; Kersten et al., 2004;
Hegdé, 2008). These priors result in behavioral biases; for instance, an-
imals are recognized faster than non-living objects (Thorpe et al., 1996;
Thurgood et al., 2011) and natural versus man-made category judg-
ments occur faster than basic-level category judgments (Loschky and
Larson, 2010). A potential weakness in our study is that whereas behav-
ior and brain activity reflect these biases, our visual decoders do not. In
the future, it might be useful to develop a fully Bayesian visual feature
decoder that incorporates such behavioral biases as priors. Experiments
that manipulate priors combinedwith such decodersmight also help us
to read out neural correlates of perceptual decision-making that are dis-
tinct from visual representations.

Three other directions could inform alternative candidates for visual
feature spaces that the brain might use to represent scenes. First, al-
though SpEn is a highly successful representation of low-level natural
image statistics for image classification tasks, our results must be
interpreted in the light of its limitations. Other natural image statistics
such as contrast energy and spatial coherence have also been successful
in predicting behavioral ratings of naturalness aswell as single-trial var-
iability of the EEG response to individual scenes (Groen et al., 2012,
2013). Structural aspects such as curvature and interactions between
edges may also be important (Walther and Shen, 2013; Choo et al.,
2014). Second, important advances have been made in computational
models of the ventral visual stream (e.g., Serre et al., 2007). These
models are variants of neural networks built by units in each layer of
the network pooling outputs of units from the previous layers. Such
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models have been able to successfully predict representational similar-
ities in various ventral areas in the inferior temporal cortex (IT) (Yamins
et al., 2014). Third, the discriminability of scenes is a function of the spe-
cific task. For instance, Sofer et al. (2015) show that bymodeling the dis-
criminability of natural scenes in superordinate vs. basic-level scene
categorization tasks, it is possible to explain the variance of behavioral
performance across subjects. Thus, by characterizing the timing of neu-
ral decoders across multiple tasks, we can further seek to understand
the neural basis of scene categorization. All these directions provide im-
portant candidates for future encoding models of MEG responses.

To conclude, the current study brought together behavioral, compu-
tational and neural correlates of rapid-scene gist categorization and
novel data analysis techniques to provide a spatiotemporal neural por-
trait of it. Future theories of rapid-scene gist categorization could be
constrained by testing a wide range of computational models of scene
perception and visual feature spaces and using this analysis framework.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.03.027.
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