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Ramkumar P, Lawlor PN, Glaser JI, Wood DK, Phillips AN,
Segraves MA, Kording KP. Feature-based attention and spatial
selection in frontal eye fields during natural scene search. J Neuro-
physiol 116: 1328–1343, 2016. First published June 1, 2016;
doi:10.1152/jn.01044.2015.—When we search for visual objects, the
features of those objects bias our attention across the visual landscape
(feature-based attention). The brain uses these top-down cues to select
eye movement targets (spatial selection). The frontal eye field (FEF)
is a prefrontal brain region implicated in selecting eye movements and
is thought to reflect feature-based attention and spatial selection. Here,
we study how FEF facilitates attention and selection in complex
natural scenes. We ask whether FEF neurons facilitate feature-based
attention by representing search-relevant visual features or whether
they are primarily involved in selecting eye movement targets in
space. We show that search-relevant visual features are weakly
predictive of gaze in natural scenes and additionally have no signif-
icant influence on FEF activity. Instead, FEF activity appears to
primarily correlate with the direction of the upcoming eye movement.
Our result demonstrates a concrete need for better models of natural
scene search and suggests that FEF activity during natural scene
search is explained primarily by spatial selection.
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NEW & NOTEWORTHY

Feature-based attention helps us to locate objects effi-
ciently during visual search, but how the brain implements
FBA in natural scenes remains an open question. We
trained macaque monkeys to search for targets in natural
scenes while recording from the frontal eye field (FEF).
Although the monkeys performed the task well, we found
that task-relevant visual features were weak predictors of
gaze behavior. Furthermore, we found that task-relevant
visual features did not modulate FEF activity.

A CENTRAL QUESTION IN NEUROSCIENCE is how the brain selects
eye movement targets. Eye movements align objects with the
high-acuity fovea of the retina, making it possible to gather
detailed information about the world. In this way, eye move-
ments inform critical everyday behaviors, including gathering
food and avoiding danger. However, from among a torrent of
visual stimuli, only some are important for the task at hand.

How does the brain prioritize information for eye movement
selection?

Prioritizing visual information becomes easier when we
search for a target object known in advance. This allows us to
use target features such as shape and color to guide our search
and filter irrelevant information (Malcolm and Henderson
2009). How exactly the brain performs this computation re-
mains unclear. A leading hypothesis posits that feature-based
attention guides the deployment of spatial selection (Wolfe
1994). During fixation, parts of the visual periphery similar to
the search target are assigned high priority. We refer to this as
feature-based attention. This spatial priority map may then be
used to select a part of the visual field to make an eye
movement to. We refer to this as spatial selection. In this way,
feature-based attention and spatial selection cooperate to influ-
ence eye movements.

One brain region thought to be important for selecting eye
movements is the frontal eye field (FEF), a prefrontal area on
the anterior bank and fundus of the arcuate sulcus (Ferrier
1875; Bruce and Goldberg 1985; Bruce et al. 1985). Extensive
literature has highlighted the FEF’s role in attention and eye
movement planning (Zhou and Desimone 2011; Moore and
Fallah 2004; Thompson et al. 2005; Schall 2004; Schafer and
Moore 2007; Buschman and Miller 2009). One central finding
is that the FEF appears to be selective for both bottom-up
saliency (Thompson and Bichot 2005; Schall et al. 1995) and
task-relevant visual features (Bichot et al. 1996; Bichot and
Schall 1999; Zhou and Desimone 2011). Crucially, distractors
that share a greater number of features with the target (e.g.,
shape, color) lead to higher firing rates. These results implicate
the FEF in feature-based attention because they demonstrate
selectivity to target-relevant features in FEF independent of
eye movement selection.

However, many of these studies have been conducted in
artificial settings that lack the richness of a more naturalistic
environment. First, typical artificial stimuli contain only a
handful of distracting objects, whereas natural scenes contain
hundreds or thousands. Second, conventional tasks used to
study eye movements require a small number of task-instructed
saccades, whereas in the natural world we often make tens of
self-guided saccades to explore a scene. Therefore, it is impor-
tant to ask how FEF’s selectivity for bottom-up saliency and
task relevance generalizes to tasks in more complicated natural
scenes. Recent work by our laboratory has shown that the
apparent encoding of bottom-up saliency by the FEF can be
explained away by the direction of spatial selection as defined
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by the upcoming eye movement (Fernandes et al. 2014). This
discrepancy in findings between studies using artificial and
natural stimuli suggests that the way the brain selects targets
for eye movements during natural vision remains an open
question.

Here we investigated the role of the FEF in feature-based
attention and spatial selection during natural scene search. In
particular, we asked if FEF activity is driven by visual features
of the search target, by the upcoming eye movement (as a
result of spatial selection), or by both. To this end, we recorded
from FEF neurons while macaque monkeys searched for
known targets embedded in naturalistic stimuli. We then mod-
eled neural activity as a function of target features and the
direction of upcoming eye movements. We found that the
direction of the upcoming eye movement explained a consid-
erable amount of neural variability, whereas task-relevant vi-
sual features did not. Therefore, the reflection of feature-based
attention in FEF activity appears to be explained by spatial
selection.

METHODS

Animals and Surgery

We used three adult female rhesus monkeys (Macaca mulatta),
ages 14–17 yr, and weight 5–6 kg. We refer to them as M14, M15,
and M16. Northwestern University’s Animal Care and Use Commit-
tee approved all procedures for training, surgery, and experiments.
Each monkey received preoperative training followed by an aseptic
surgery to implant a recording cylinder above the FEF, as well as a
titanium receptacle to allow head fixation. Surgical anesthesia was
induced with thiopental (5–7 mg/kg iv) or propofol (2–6 mg/kg iv)
and maintained using isoflurane (1.0%-2.5%) inhaled through an
endotracheal tube. For single electrode recordings performed in M14
and M15, an FEF cylinder was centered over the left hemisphere at
stereotaxic coordinates anterior 25 mm and lateral 20 mm. Chronic
recording with a recording microdrive was used to record from
multiple units in monkeys M15 and M16. The recording chambers for
these microdrives were centered and mounted at stereotaxic coordi-
nates anterior 24 mm and lateral 20 mm (M15 left hemisphere; M16
right hemisphere).

Behavioral Tasks

We analyzed data from two different experiments involving visual
search in natural scenes: the fly search task and the Gabor search task
(Fig. 1). Importantly, both tasks were designed to generate large
numbers of purposeful, self-guided saccades. Across all sessions and
tasks, monkeys performed �300–1,500 trials per session. Thus, for a
typical task comprising �20 sessions, �6,000–30,000 images were
shown.

To control experimental stimuli and data collection, we used the
PC-based REX system (Hays et al. 1982), running under the QNX
operating system (QNX Software Systems, Ottawa, ON, Canada).
Visual stimuli were generated by a second, independent graphics
process (QNX-Photon) and rear-projected onto a tangent screen in
front of the monkey by a CRT video projector (Sony VPH-D50,
75-Hz noninterlaced vertical scan rate 1,024 � 768 resolution). The
distance between the front of the monkey’s eye and the screen was
109 cm (43 in.). Each natural scene spanned 48 � 36° of the
monkey’s visual field.

Fly search task. In this task, monkeys (M14 and M15) were trained
to locate a picture of a small fly embedded in photographs of natural
scenes. Monkeys initiated each trial by fixating a central red dot for
500-1,000 ms, after which the scene and fly target appeared on the
screen, and the fixation dot disappeared. The fly target was placed
pseudorandomly so that its location was balanced across eight 45°
sectors. Within these sectors, the fly target was pseudorandomly
placed between 3 and 30° of visual angle from the center of the screen.
The trial ended when either the monkey fixated a 2°-window around
the target for 300 ms or failed to find the target after 25 saccades.
When the target was found and successfully fixated, the monkey was
rewarded with water (for details see Fernandes et al. 2014; Phillips
and Segraves 2010).

The natural scene images used for this task were drawn from a
library of over 500 images, originally used for Phillips and Segraves
(2010). Photographs were taken with a digital camera and included
scenes with animals, people, plants, or food. Image order was chosen
pseudorandomly so that images were repeated only after all others had
been shown. Although each unique scene was repeated �10 times
over the course of the search task, since the locations of the targets
were randomized, memorization was not likely to be useful and the
monkey had to search visually on each trial to successfully find the
target.

Since the monkeys quickly learned to perform the task using only
a small number of saccades, we made the task more difficult by
blending the fly image with the background photographs. We did this
using a standard alpha-blending technique (see Fernandes et al. 2014
for details). Even for targets with a transparency of �65%, the
average success rate across animals and sessions approached �85%.

Gabor search task. In this task, monkeys (M15 and M16) were
trained to locate a Gabor wavelet embedded in photographs of natural
scenes. Gabor wavelets are oriented gratings convolved with a local
Gaussian and have been used extensively in studies of visual search
(Najemnik and Geisler 2005). Here, we used Gabor wavelets because
their properties can be easily manipulated (e.g., orientation) and
because natural scenes often contain oriented textures. Taken to-
gether, this made it possible to quantify “relevant” features in the
environment in the sense that image patches sharing features (e.g.,
orientation) with the Gabor wavelet could be expected to draw the
monkey’s gaze. In these experiments, we used Gabor wavelets with
the same orientation (either vertical or horizontal) within each session.
Task parameters and background images were similar to those used in

Gabor searchFly search

Fig. 1. Example stimuli used in natural scene
search tasks. Targets were blended into the
natural scenes and monkeys were given a
water reward for finding the target within a
fixed number of saccades. For the sake of
illustration, targets are encircled in red; the fly
is shown unblended since it is difficult to see
at this resolution.
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the fly search task. This task was significantly more difficult than the
fly search task and both monkeys did not exceed an average success
rate of �50%.

Data Acquisition and Preliminary Characterizations

Eye tracking. To track eye gaze behavior, we recorded monkeys’
eye position with a precision of up to 0.1° resolution. M14 and M15
received an aseptic surgery to implant a subconjunctival wire-search
coil to record eye movements for the fly search task. The coil was
sampled at 1 kHz. Eye movements of M15 and M16 were measured
using an infra-red eye tracker for the Gabor search tasks (ISCAN,
Woburn, MA, http://www.iscaninc.com/), which samples eye position
at 60 Hz.

Saccade detection. We detected saccade onsets and offsets from the
kinematics of recorded eye position. We used a threshold of 80°/s for
start velocity and marked a saccade starting time when the velocity
increased above this threshold. Likewise, saccade-ending times were
marked when the velocity fell below 100°/s at the end of this period
of decrease. Saccades longer than 80° or with duration longer than 150
ms were discarded as eye-blinks or other artifacts. Fixation locations
were computed as the median (x, y) gaze coordinate in the intersac-
cadic interval.

Neural recording. We analyzed experiments that used two different
electrophysiological recording setups. One set of experiments (the fly
search task) used single-electrode recordings, whereas the other sets
of experiments (Gabor search tasks) used chronic microdrives to
simultaneously record multiple units.

Single-electrode recording. For monkeys M14 and M15 in the fly
search task, single-electrode activity was recorded using tungsten
microelectrodes (A-M Systems, Carlsborg, WA). Electrode penetra-
tions were made through stainless steel guide tubes that just pierced
the dura. Guide tubes were positioned using a Crist grid system (Crist
et al. 1988; Crist Instruments, Hagerstown, MD). Recordings were
made using a single electrode advanced by a hydraulic microdrive
(Narashige Scientific Instrument Lab, Tokyo, Japan). The interelec-
trode distance was 1.0 mm. Online spike discrimination and the
generation of pulses marking action potentials were accomplished
using a multichannel spike acquisition system (Plexon, Dallas, TX).
This system isolated a maximum of two neuron waveforms from a
single electrode. Pulses marking the time of isolated spikes were
transferred to and stored by the REX system. During the experiment,
a real-time display generated by the REX system showed the timing
of spike pulses in relation to selected behavioral events.

Recordings were confirmed to be in the FEF by the ability to evoke
saccades with current intensities of �50 �A (Bruce et al. 1985). To
stimulate electrically, we generated 70-ms trains of biphasic pulses,
negative first, 0.2 ms width per pulse phase, delivered at a frequency
of 330 Hz.

Chronic recording. For monkeys M15 and M16 in the Gabor
search tasks, recordings were performed using a 32-channel chroni-
cally implanted electrode microdrives (Gray Matter Research, Boze-
man, MT). The depth of each individual tungsten electrode (Alpha-

Omega, Alpharetta, GA) was independently adjustable over a range of
20 mm. The interelectrode distance was 1.5 mm.

All electrodes were initially lowered to pierce the dura. Individual
electrodes were then gradually lowered until a well-isolated unit was
located. In general, only a subset of electrodes was moved on any
given day, and electrodes were left in place for at least 3 days before
further lowering.

Both spikes and local field potentials (LFPs) were recorded with a
multichannel acquisition system (Plexon, Dallas, TX) based on a
separate PC. Spike waveforms, sampled at 40 kHz were stored for
offline sorting. In addition, a continuous analog record of electrode
signals sampled at 20 kHz was saved for offline LFP analysis.
Automatic spike sorting was performed offline using the Plexon
Offline Sorter (Plexon).

Since any given electrode was often left in place for multiple days,
we likely recorded from the same neuron across sessions. Therefore,
we combined data from units that persisted across recording sessions
on different days by manually comparing spike waveforms from units
recorded at the same site on different days. Generally, we merged
units sharing waveform shape (rise/fall characteristics, concavity/
convexity, etc.) and time course. Ambiguous cases were not com-
bined, and waveforms that did not have a single characteristic shape
were considered to represent multiunit activity (multiple single units),
which were also included for analysis. See Table 1 for the entire set
of animals, tasks, and units analyzed.

To verify that our recording sites were in the FEF, we used
microstimulation to evoke saccades in two of three monkeys (M14
and M16) for both tasks and M15 for the fly search task. For the
single-electrode recordings in the fly search task (M14, M15) we
stimulated at the end of each recording session and only used data
from sessions that reliably evoked saccades with thresholds of �50
�A (Bruce et al. 1985). For the implanted electrode microdrives
(M16), we only used units isolated from electrodes for which saccades
could be evoked with thresholds of �50 �A. Since M15 was required
for future experiments and stimulation quickly degrades the recording
fidelity of the tungsten electrodes, we were unable to stimulate to
verify the location of our recording sites for the Gabor search tasks in
this monkey. As a result, we were able to verify FEF location with
stimulation in only one (M16) of the two chronically implanted
monkeys. However, in M15 the chronic microdrive was centered at
the stereotaxic location matching maximum FEF evoked saccade sites
in M16 and 3 other monkeys used in previous studies. Furthermore,
we limited our analyses to units that had properties (receptive field
structure and response characteristics) expected in the FEF (see FEF
cell characterization below). This decreased the chance of analyzing
units from nearby brain regions that were not part of the FEF.

FEF cell characterization. In the fly search task experiments, cell
type characterization was performed for all cells using a standard
battery of tests (memory-guided delayed saccade task and visually
guided delayed saccade task; for details see Phillips and Segraves
2010; Fernandes et al. 2014). We excluded cells not meeting criteria
for having either visual-related activity or movement-related activity.
From this dataset, we analyzed 46 neurons (21 visual cells, 4 move-

Table 1. List of units characterized by cell type and list of modeled units

Animal Task Sessions Characterized Units V M VM Undetermined Modeled Units

M14 Fly 19 19 10 1 9 7 15
M15 Fly 27 27 11 3 4 1 25
M15 Gabor (H) 27 93 13 24 56 81
M16 Gabor (H) 36 76 18 21 37 — 57
M16 Gabor (V) 11 49 18 7 24 — 49

The H or V in brackets indicates the orientation of the target for the Gabor search tasks. V, M, and VM are visual, movement, and visuo-movement cell types.
We could not determine cell types for a small fraction of the cells in the fly task (undetermined cells). We were able to model the majority of characterized units
(modeled units), although certain units needed to be discarded due to low firing rates.
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ment cells, 13 visuomovement cells, and 8 other cells that did not pass
any of these criteria; see Table 1).

For the Gabor search task experiments, we did not use the standard
battery due to the large number of simultaneously recorded cells
resulting from chronic recordings. Instead, we used activity from the
natural scene search to estimate the degree of visual and motor
activity. In particular, we labeled cells as having visual activity (visual
cells) if the firing rate changed significantly from baseline when the
natural scene flashed on (baseline interval: 100-0 ms before scene
onset; test interval: 5–150 ms after scene onset; Wilcoxon rank-sum
test, P � 0.005). Similarly, we labeled cells as having movement
activity (movement cells) if the firing rate at saccade initiation
exceeded that at baseline in any of 8 (45°) binned directions (baseline
interval: 300-200 ms before saccade initiation; test interval: 50 ms
before to 50 after saccade; Wilcoxon rank-sum test, P � 0.005). If
they passed both tests, we considered them as visuomovement cells.
From these datasets, we analyzed a total of 218 cells (49 cells that
passed the visual test only, 52 cells that passed the movement test
only, and 117 cells that passed both the visual and movement tests; see
Table 1).

Behavioral Data Analysis

Relevance map. This study asks whether FEF activity reflects
feature-based attention as a means to select eye movements. In our
visual search tasks, we operationalized feature-based attention as a
bias for visual features similar to the search target. We therefore
define these target-similar visual features as “relevant” for the search
task. To examine whether relevance influences search behavior and
FEF activity, we needed to precisely define relevance. We generated
relevance “maps” by performing a two-dimensional convolution of
the visual scene with the search target. If an image patch is similar to
the target, their convolution will yield a large value. In practice, to

avoid sensitivity to the precise phase of the Gabor, we convolved the
target as well as its 90° phase-shifted version with the scene. We then
took the sum of squares of the convolutions (Ramkumar et al. 2015;
see Fig. 2A). This operation effectively measures the low-level visual
feature overlap between image regions and the search target. Because
our search tasks used different search targets (horizontal Gabor
wavelet, vertical Gabor wavelet, fly image), we generated relevance
maps separately for each task. For the fly search task, which used
color images, we summed the relevance map over the three color
channels (RGB).

Edge-energy map. Edge energy of natural scenes is known to
influence the fixation choice of both humans and monkeys in visual
search (Ramkumar et al. 2015; Rajashekar et al. 2003; Ganguli et al.
2010). Therefore, we also computed edge energy as a potential feature
that may influence fixation choice, defined as the sum of squares of the
vertical and horizontal edge gradients (Fig. 2B; for details, see Ramkumar
et al. 2015). For the fly search task, we calculated the energy maps for
each of the RGB color channels and summed them.

Itti-Koch saliency map. Although this study emphasizes the effect
of feature-based attention (relevance) on behavior and FEF activity,
we also analyzed bottom-up saliency, as it has been influential in eye
movement behavior and FEF electrophysiology (Fernandes et al.
2014). We operationally defined bottom-up saliency using the Itti-
Koch model (Walther and Koch 2006). This model defines saliency in
terms of contrast of luminance, color, and orientation at multiple
spatial scales.

Analysis of the effect of visual features on fixation selection. Before
examining the electrophysiological data, we asked whether visual
features (relevance, energy, and saliency) did indeed guide eye move-
ments in behavior. More specifically, we asked whether the visual
features predicted eye movements to those locations. To do this, we
performed a receiver operator characteristic (ROC) analysis. To con-
struct the ROC curves, we used the experimentally measured locations
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Fig. 2. Operational definition of relevance (tar-
get similarity) and edge energy. A: relevance
maps were obtained by convolving the target
and its quadrature phase shift with the natural
scene and then taking the sum of their squares.
B: edge-energy maps were computed by taking
the sum of squares of horizontal and vertical
edge gradients. Before computing the relevance
and energy maps, the image was degraded in
accordance with decreasing visual acuity in the
periphery, with respect to an example fixation
location shown as a yellow crosshair [adapted
from Ramkumar et al. 2015].
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of saccade endpoints (fixations), in conjunction with the model-based
feature maps (described above) for each image viewed by the mon-
keys. If feature maps indeed predict fixation locations, saccade end-
points should fall on image patches with higher values of the respec-
tive maps than those not drawing saccades.

To control for center bias in our scenes, we used a shuffle control
approach. We did this because human-photographed scenes often
include interesting objects (those likely to be relevant) in the center of
the image (Kanan et al. 2009; Tseng et al. 2009). This makes it
possible, for example, to misattribute fixation selection to a certain
visual feature when the better explanation is simply that the observer
tends to look towards the center of the image/screen. To control for
this possibility, we asked whether the predictive power of visual
features at fixated patches (for a given image) was greater than that of
the features of the same patches (same fixation locations) superim-
posed on a randomly chosen image. If the predictive power of feature
maps was only due to center bias, the visual features at fixated patches
in true images should not be more predictive of saccades than the
features of image patches in randomly chosen images on average.

Although it is well known that visual acuity is strongest at the fovea
and falls off with eccentricity, predictive models of gaze behavior
have not taken it into account. Indeed, we have recently shown that
modeling visual acuity has enabled the discovery of gaze strategies at
different time scales during visual search (Ramkumar et al. 2015).
Therefore, to model decreasing visual acuity with peripheral distance,
we processed the stimuli before computing the feature maps. More
specifically, we applied a peripheral degradation filter with respect to
the previous fixation location (see Ramkumar et al. 2015 for details).

To compare the distribution of feature (relevance, edge energy, or
salience) values for fixated patches in the true images and shuffled-
control images, we generated the feature probability distribution
functions (PDFs) by aggregating behavioral data across days for each
monkey. We then generated the cumulative distribution function
(CDF) of these PDFs for true and shuffled fixation patterns. To
compare these two distributions, we plotted the true CDF vs. the
shuffled CDF, effectively yielding an ROC curve. We then computed

the area under the ROC curve for each behavioral session from the
Gabor search tasks.

Neural Data Analysis

The goal of this study is to ask what factors influence FEF
activity during natural scene search. Because there may be multiple
such factors, we used a multiple-regression approach: the Poisson
generalized linear model (GLM). We modeled neural activity using
factors that potentially influence FEF spiking: upcoming saccade
direction (as a proxy for saccadic motor command) and visual
features (relevance and saliency). To quantify the extent to which
each of these factors explains FEF activity, we fit the model to the
experimental data.

Generalized linear modeling. Here we model extracellularly re-
corded spiking activity in the FEF as a Poisson process with a
time-varying firing rate. The spiking activity of most cortical neurons
follow Poisson statistics and we specifically verified that this was a
reasonable assumption by checking that the variance was equal to the
mean spike count over a wide range of spike counts across tasks,
animals, and neurons. In general, it is reasonable to assume that the
variability around the mean spike count is Poisson distributed for
sufficiently narrow time bins within which the neuron’s firing rate can
be assumed to be constant (homogeneous). We used 10-ms time bins
in our models. To model nonnegative, time-varying firing rates,
explanatory features are linearly combined and then passed through an
exponential nonlinearity (the Poisson inverse link function) (Fig. 3).
The number of spikes in each 10-ms time bin is then drawn randomly
from a Poisson distribution with the mean given by the estimated
firing rate in that bin.

To accurately model FEF neurons, we included the known char-
acteristics of FEF receptive fields (RFs). FEF cells are typically
influenced by movement and/or visual features in a particular part of
retinocentric space and have a stereotypical temporal response. In
particular, firing rates of classical visually tuned neurons are typically
modulated by visual features within the RF. Likewise, classical
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movement-tuned neurons are modulated by upcoming/current eye
movements in the direction of the preferred movement direction
(movement field). Thus FEF RFs have both spatial and temporal
components. We jointly estimated the spatial visual receptive field,
the movement receptive field, as well as the temporal response to
visual and movement features.

For mathematical tractability, we also assume that the spatial and
temporal parts of the RF are multiplicatively separable. Details of the
parameterization and fitting process are provided below.

Spatial receptive field parameterization. Spatially, FEF RFs are
retinocentric in nature, with centers ranging from foveal to eccentric
(Bruce and Goldberg 1985). This is true for classically defined
movement, visual, and visuomovement cells. For both movement and
visual features, we parameterize space using polar coordinates (angle
and eccentricity). More specifically, we use cosine tuning for the
angular coordinate and flat tuning for the eccentric coordinate. We
chose flat eccentric tuning for mathematical tractability, but this
assumption is realistic for many FEF neurons, which tend to have
large RFs (Bruce and Goldberg 1985).

Temporal receptive field parameterization. Because of the uncon-
strained nature of visual search, modeling the temporal responses
of FEF neurons is complex. To simplify the problem, we chose to
model only the neural activity in a fixed temporal window sur-

rounding each eye movement (200 ms both before and after
saccade initiation, as well as fixation onset) rather than all neural
activity in each trial. This interval is large enough to contain both
presaccadic activity and postsaccadic fixation-related activity.

The temporal responses of FEF neurons are heterogeneous, so we
allowed for sufficient variability in their shape. To do this, we allowed
both saccadic motor activity and visual responses to be explained by
a range of temporal scales spanning the 400-ms temporal window.
More specifically, we convolved the spatial receptive field features
with a temporal basis set, {gi}, consisting of five fixed-width (wi � 40
ms) raised cosine functions (Eq. 1) centered at times ti � {�140,
�70, 0, 70, 140} ms with respect to saccade onset (for upcoming eye
movement-related activity) or fixation onset (for visual activity).
Ultimately, these temporal basis functions allow us to explain a wide
range of neural response templates related to both saccades and
fixation.

gi � �1 � cos
ti � ci

2wi
� ⁄ 2 (1)

Generative model. With the use of the above parametric structure,
the entire generative model of spike activity is built using the follow-
ing components (Fig. 4).

Fig. 4. Parameterization of the generative model. Untuned saccade- and fixation-related temporal responses were modeled using linear combinations of
raised-cosine temporal basis functions. Spatiotemporal tuning to saliency, relevance, energy, and saccade direction were modeled using bilinear models with left
multipliers representing temporal basis function loadings, and right multipliers representing spatial basis function (cosine and sine) loadings. Additionally, a
spike-history (self) term was modeled using a linear combination of temporal basis functions causally aligned to spike events. Parameters of the model were fit
using maximum-likelihood with elastic net regularization.

1333FEF IN NATURAL SCENE SEARCH

J Neurophysiol • doi:10.1152/jn.01044.2015 • www.jn.org

 by 10.220.32.247 on O
ctober 31, 2016

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


BASELINE FIRING RATE. We use a scalar term �0 to model a
constant baseline firing rate.

UNTUNED TEMPORAL RESPONSES. Neurons may have temporal
responses to saccade and fixation events that do not depend on
direction. We account for this possibility using separate untuned
temporal responses aligned to both saccade onset and fixation onset.
The untuned saccade-related response is given by �j�1

G �j
sacgj(t) �

Esac(t), where �j
sac are the free parameters, gj(t) are the basis functions,

and Esac(t) is an event function (a delta function) specifying saccade
onsets. Similarly, the untuned fixation-related response is given by
�j�1

G �j
fixgj(t) � Efix(t). Each untuned response is specified by five free

parameters.
SPATIOTEMPORAL VISUAL (SALIENCY, RELEVANCE, AND ENERGY)

TUNING. We modeled the neural activity around a fixation event as a
function of the visual features (relevance and saliency) in the RF with
respect to that fixation location. For each fixation, we began by
extracting the visual features from an image patch (400 � 400 pixels;
or �13° � 13°) centered on the fixation location. The values for each
visual feature were taken from their respective feature maps (see
above). To simulate the effect of resolution decreasing with eccen-
tricity, we then applied a blurring transform using image pyramids
(Geisler and Perry 1998; see Ramkumar et al. 2015 for details).

We do not know the visual RF a priori; it has to be estimated from
the data. To do this, we first constructed the x and y components for
each visual feature by applying a spatial cosine and sine mask,
respectively, to the visual feature maps of the extracted image patch
(Fig. 4). The RF center (preferred angle, �*) can then be inferred
from the data by fitting the corresponding weights for the sine and
cosine masked images and using the trigonometric identity:

cos�� � �*� � cos �*cos � � sin �*sin �, and (2)

�* � tan�1� sin �*

cos �*�
where cos�* and sine�* are linear model parameters of the GLM.

Along with estimating a spatial RF (via the above parametrization),
we also wanted to model the temporal response around the fixation
event. To this end, we convolved each spatial covariate (sine and
cosine) with each of the five allowed raised-cosine temporal basis
functions. Combining all of these parts, the complete spatiotemporal
visual response can be succinctly specified by two bilinear models as:

	sal
T Hsal�	C

	S
� � 	rel

T Hrel�	C

	S
� � 	en

T Hen�	C

	S
� (3)

where 	sal, 	rel, and 	en are free parameters specifying the temporal
response to saliency, relevance, and energy, 	C and 	S specify the
angular position of the visual RF; and Hsal, Hrel, and Hen are
matrices representing spatial sine and cosine covariates convolved
with the temporal basis functions (Fig. 4). Note that we assume the
same spatial RF for both saliency and relevance. (i.e., 	C and 	S

are the same for saliency, relevance, and energy). Thus we have 5
free parameters each for the saliency, relevance, and energy
temporal response, and 2 free parameters for the spatial RF,
resulting in a total of 17 free parameters.

SPATIOTEMPORAL SACCADE TUNING. We modeled the neural ac-
tivity around a saccade event as a function of the upcoming saccade
direction (upcoming “saccadic motor command”). To do this, we
constructed the movement covariates as the sine and cosine projec-
tions of the upcoming eye movement direction. Note that we do not
incorporate previous knowledge of the neuron’s RF from RF mapping
tasks. As with the visual RF estimation, the angular position of the
neuron’s movement field can be inferred from the data by fitting the
model parameters corresponding to sine and cosine covariates.

As with the visual response, to simultaneously estimate a temporal
movement response along with the movement field, we can specify a
bilinear model as:


mov
T Hmov�
C


S
� (4)

Altogether, this response is specified by five temporal and two spatial
parameters, resulting in seven free parameters.

SPIKE HISTORY TERMS. To further explain variability in neural
activity, we included a spike history term. This feature is not central
to the logic of our argument, but serves to improve our model of
neural activity. To model the effect of spike history, we simply
convolve the spike train with three raised-cosine temporal basis
functions, hj(t) spanning a range of [0 200] ms with respect to each
spike event. The basis functions were centered at 60, 100, and 140 ms.

The temporal response for the spike history term is not coupled to
any external events (i.e., fixation or saccade onset), and is given by
�j�1

H �j
selfhj(t) � y(t), where y(t) is the spike train that we are modeling

with the GLM. This response is specified by three free parameters,
�j

self, j � 1 2, 3.
Spatiotemporal RF fitting algorithm. To summarize our model

parameterization: we model space with polar coordinates but dispense
with eccentricity for mathematical tractability. We model time using
raised-cosine temporal basis functions.

For the spatiotemporal model terms, each model feature (saliency,
relevance, energy, and upcoming movement direction) is initially
parameterized by two covariates: the sine and cosine projections of
that feature. We then model temporal responses of each spatial feature
with five raised cosine functions. Thus the sine and cosine projection
of each spatial feature is convolved with five temporal basis functions.
This leads to a total of 40 covariates for the model of saccadic motor
and visual activity (4 � 2 � 5 � 40, four features, two spatial
coordinates for each feature, five temporal basis functions for each
spatial covariate).

For the temporal model terms, the untuned temporal responses
aligned to saccade and fixation onsets have five covariates each, and
the spike history term provide three covariates. Including the baseline
term with all of these gives us a total of 53 covariates.

Using all 53 convolved covariates as an independent variable
would make the maximum-likelihood estimation problem linear and
convex but could lead to different temporal responses for the sine and
cosine terms, making the estimate hard to interpret. For example, it
would be difficult to rationalize differing time courses for horizontal
and vertical saccades.

To keep the model interpretable, we adopted the bilinear formula-
tions of the spatiotemporal terms given in Eqs. 3 and 4, resulting in a
total of 37 (17 for saliency, relevance, and energy, 7 for movement, 10
for untuned, and 3 for spike history terms) free parameters. However,
since the log-likelihood of this bilinear formulation is no longer
convex, estimating it could result in local minima and would in
general suffer from the difficulties of optimizing nonconvex functions.

Therefore, to estimate the parameters of this model, we adopted an
iterative algorithm in which we alternatively held the spatial param-
eters (	C, 	S, 
C, 
S) or the temporal parameters (	sal, 	rel, 	en, 
mov)
fixed while fitting all the others. In this approach, each iteration step
is a convex optimization problem. This method guarantees that the
temporal response of each spatial covariate will be the same. We
alternated between fitting stages until the model parameters
converged.

Model fitting. We trained and tested our model using nonoverlap-
ping twofold cross validation. To avoid overfitting, we estimated
model parameters using elastic net regularization (Hastie et al. 2009;
Qian et al. 2013; Friedman et al. 2010) (Glmnet implemented in
Matlab). Regularization helps to select for simpler models by penal-
izing models with large or many parameter values. Elastic net regu-
larization includes two free parameters: �, which determines the
strength of L1 relative to L2 penalization, and �, which determines the
strength of regularization. We selected the values of these parameters
(� � 0.01, � � 0.05) on a different data set using cross validation.
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Model comparison. The main goal of modeling spike trains using
GLMs was to determine whether FEF activity significantly encodes
visual or movement features. To address the main scientific question
of whether the FEF encodes task relevant visual features, we fit partial
models to the data using relevance covariates only or movement
covariates only, and compared them against joint models comprising
both relevance and movement covariates. To maximally explain
variance and address possible confounding factors, we also fit a more
comprehensive and more complex model including saliency, energy
and spike history terms. The partial models fell into two categories:
leave-out models, and leave-in models. Leave-out models leave out
the main feature of interest; the idea is that by comparing a leave-out
model against a full model, we can quantify the marginal predictive
power of the left out feature. Leave-in models only include the
features of interest; the idea is to characterize the apparent encoding
of these features by neural activity when other features are not
considered. We used leave-out models to assess statistical significance
and leave-in models as an interpretive tool for apparent encoding.

To measure the quality of our model fits, we used two metrics:
pseudo-R2, and conventional-R2. Pseudo-R2 is related to the likeli-
hood ratio and extends the idea of linear R2 to non-Gaussian target
variables. The idea of the pseudo-R2 metric is to map the likelihood
ratio into a [0, 1] range, thus offering an intuition similar to the
conventional R2 used with normally distributed data. Many definitions
exist for the pseudo-R2, but we used McFadden’s formula (McFadden
1974).

RD
2�model� � 1 �

logL�n� � logL��̂�
logL�n� � logL�n��

where logL(n) is the log likelihood of a perfect model, logL��̂� is the
log likelihood of the model in question, and logL( �n) is the log
likelihood of a model using only the average firing rate. More
specifically, it can be interpreted as the relative improvement that a
given model offers above and beyond the simplest possible model
(constant firing rate).

We also use a variant of pseudo-R2, relative pseudo-R2, to compare
nested models (e.g., a partial model with the full model). The relative
pseudo-R2 quantifies the increase in model likelihood as a result of
adding back the left-out features from the partial model (also maps to
the [0, 1] range). A relative pseudo-R2 significantly greater than zero
indicates that the left-out feature is a statistically significant explan-
atory feature.

RD
2�model 1, model 2� � 1 �

logL�n� � logL��̂2�
logL�n� � logL��̂1�

where logL��̂2� is the log likelihood of the full model, and logL��̂1� is
the log likelihood of the nested, partial model. It can be interpreted as
the relative improvement due to the model components left out by
model 1.

We computed pseudo-R2 for all models and relative pseudo-R2 for
all partial models on test sets of both cross-validation folds. We
obtained 95% confidence intervals on these metrics using boot-
strapping. A left-out feature was deemed significant at four-sigma
(P � 0.006; uncorrected for multiple comparisons) if the minimum
of the lower bounds of the relative pseudo-R2s was greater than
zero (a conservative measure).

Pseudo-R2 values are not directly comparable to (are much smaller
than) conventional R2 and are thus more difficult to interpret. We also
computed conventional R2 values by calculating the correlation coef-
ficient between 1) the saccade- and fixation-averaged perisaccade time
histograms (PSTHs) and 2) the saccade- and fixation-averaged model
predictions. Averaging across hundreds of fixations renders Poisson
spiking into a smooth curve, which can be compared with the smooth
firing rate predictions of the model.

Explaining away. By using a multivariate modeling approach, we
are able to compare the relative contributions of different model
components (e.g., visual features and upcoming eye movements). In
this section, we elaborate on the nuances of interpreting the results of
a multivariate analysis.

Even if two model components are both individually correlated
with neural activity, multiple situations related to marginal explana-
tory power can arise in theory:

If two components explain the “same” neural variability, then they
will have overlapping explanatory power. In this case, a multivariate
model with both components is unlikely to be significantly better than
the single best univariate model.

If two components explain “different” neural variability, then they
will have nonoverlapping explanatory power. In this case, a multivar-
iate model with both components is likely to be significantly better
than both univariate models.

If two components explain neural variability that is similar but is
neither completely identical nor distinct, then an intermediate situa-
tion arises. In this case, a multivariate model is likely to be signifi-
cantly better than both univariate models as the overlap between the
two decreases.

Perisaccade time histograms analysis. In addition to modeling
individual neurons using GLMs, we also analyzed them in a conven-
tional way using perisaccade time histograms (PSTHs). We chose to
perform this analysis for one set of sessions for which relevance and
energy were maximally predictive of fixation choice (i.e., for animal
M16, vertical Gabor search task). We computed these PSTHs for two
different sets of saccades as follows.

First, we selectively analyzed saccades into the movement RF as
follows. We categorized each saccade into one of eight directional
bins with bin centers at 0, 
/4, 
/2, 3
/4, �3
/4, �
/2, and �
/4,
and averaged the firing rates in 10-ms time bins across saccades,
separately within each directional bin. We then considered the move-
ment-field (movement RF) to be along the directional bin having
highest peak firing rate around the saccade. We took this within-RF
PSTH for each neuron and max-normalized it, i.e., set the peak firing
rate within this bin to 1. We then averaged these normalized PSTHs
across neurons to produce a population-averaged PSTH. We sepa-
rately calculated such a population-averaged PSTH for saccades
categorized according to high and low relevance (top 50% of saccades
to high- and low-relevance locations) at saccade landings, as well as
high and low edge energy.

Second, we selectively analyzed saccades out of the movement RF
as follows. As before, we categorized saccades into one of eight
directional bins and computed the PSTHs for each directional bin
within 10-ms time bins. We then defined saccades out of the RF to be
those that were not into the directional bin defined by the maximum
peak firing rate (i.e., the movement RF) as well as the two neighboring
directional bins. We averaged the PSTHs across these five out-of-RF
directional bins. As before, we max-normalized the traces before
averaging them across neurons. Crucially, we calculated these out-
of-RF PSTHs separately for high and low relevance (top and bottom
50% of saccades) within the presaccadic RFs (not those at saccade
landings). We also calculated these PSTHs separately for high and
low edge energy, again within presaccadic RFs, not saccade landings.

Power analysis. Since we found that relevant visual features did not
explain FEF activity, we wanted to ask whether our approach had
sufficient power to detect such an effect. To do this, we simulated
neural data with known parameters (e.g., a weak relevance represen-
tation) and attempted to detect the effects of those parameters. We
used behavioral data from a single experimental session (eye move-
ments and image features) and simulated spiking activity according to
our Poisson model.

To ask whether we could detect a weak effect of relevance, we first
simulated neural activity with a range of representation strengths for
relevance. As a measure of representation strength, we defined mod-
ulation depth as the relative change in firing rate due to a 1 SD change
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in the given feature. For example, if a fixated image patch had a
relevance value that was 1 SD above average, and led to a 10%
increase in firing rate from baseline, we would say the modulation
depth was 10% (alternatively, 1.1). We explored 10 modulation
depths that were evenly spaced between 1.05 and 1.30. We used a
baseline firing rate of 20 spikes/s and ensured that average firing rates
were the same across modulation depths. To do this, we randomly
removed spikes to achieve an average of 20 spikes/s in each condition.
A given representation was said to be detectable if the marginal
predictive power of relevance was statistically greater than zero (if its
95% confidence interval did not overlap zero).

To explore the consequences of using noisy or inaccurate
relevance models, we performed two additional analyses. In the
first, we simulated neural data according to our relevance model as
above. We then corrupted the relevance model covariates with
Gaussian noise before fitting the model.

xfitted � xsimulated � �N

where xsimulated is the covariate used for data simulation with � � 1,
� � 1, xfitted is the covariate used for fitting, N is Gaussian noise with
� � 1, � � 1, and � tunes the degree of noise added. In addition to
the uncorrupted covariates, we used three levels of noise. These
corrupted model covariates used for fitting were correlated with the
model covariates used for simulation with r � 0.8, 0.5, 0.2. This
procedure allowed us to explore when the effect of relevance was
detectable, even if the definition of relevance used for fitting was a
noisy version of the “correct” definition.

In the second analysis, we characterized the consequences of
simulating and fitting the model with qualitatively different definitions
of relevance. Specifically, we simulated the data using edge energy, a
visual feature that is correlated with relevance (r � 0.61) and fit the
model using relevance (Ramkumar et al. 2015). This allowed us to
characterize the effects of fitting the model with an inaccurate version
of the “correct” definition of relevance.

RESULTS

When we search for a known target, we can use properties of
that target to guide our search. In this study, we ask whether the
FEF, a region heavily implicated in eye movement selection,
facilitates feature-based attention by biasing gaze towards
target features, or whether it reflects spatial selection of sub-
sequent eye movement targets. We recorded a heterogeneous
population of FEF neurons from three macaques while they
performed several variations of a natural scene search task. In
each task, a target known to the monkeys ahead of time was
embedded in natural scenes, and the monkeys were rewarded
for successfully fixating this target (see METHODS for details).
Since the spatial distribution of targets in the scene was
extremely broad and there was no contextual information about
their location in the scene, spatial attention would not help
them find the target. Furthermore, since the targets are blended

into the scene, they do not stand out with respect to their local
background. Thus looking for salient objects was not a viable
strategy either. However, because the targets were known
ahead of time, the monkeys could use target features, task-
relevant features, to guide their search. To disentangle possible
influences of feature-based attention and spatial selection on
FEF activity, we then analyzed the data with a multiple-
regression approach.

First, we found that monkeys were able to perform the tasks
to varying levels of success (see Table 2 for the search
performance of individual monkeys averaged across sessions).
The fly task was relatively easier because it was a large, mostly
black and white target blended into a colored natural scene and
because its position was restricted to a 3–30° range around the
center. By comparison, the Gabor task with a grayscale back-
ground and a grayscale target uniformly distributed around the
scene was significantly harder.

Next, we asked if monkeys indeed use visual features to
guide their search. To do this, we performed ROC analysis to
examine whether image patches with higher task relevance
predicted fixations. Since human-photographed natural scenes
are known to have a center bias, we compared the feature
distribution of fixated image patches to the feature distribution
of the same fixation pattern superimposed on a randomly
chosen image (see METHODS for details). None of the visual
features were able to predict fixation choice significantly above
chance [area under the curve (AUC) of 0.5] for the fly search
task (Fig. 5). For the Gabor task, both relevance and energy
predicted fixations only for monkey M16 (Fig. 5). The overall
predictive power of relevance was weak (AUC � 0.55) but
energy was more strongly predictive of fixations than relevance
for the same subset of tasks (Fig. 5; AUC � 0.6). Although the
effect size of relevance appears modest, it is reasonable in the
context of most predictive models of gaze behavior (for a
recent survey, see Borji et al. 2013; the best performing models
have an AUC of under 0.6). Thus, at the very least, correlates
of task relevance and energy may be encoded by brain regions
responsible for saccade selection.

The ROC analysis only provides us with a session-by-
session summary statistic of the influence of search-target
related features on fixation selection. To ask if the influence of
these features on fixation choice was modulated by search
performance, we performed three different analyses.

First, we separately analyzed the fixations from successful
and unsuccessful trials. However, we found no significant
differences between the AUCs across these two types of trials
(not shown). We did not analyze the fly search task in this way

Table 2. Statistics of search behavior for each monkey and task summarized across sessions

Animal Task Trial Duration, s Success Rate, %
No. Saccades to
Locate Target

Fixation Duration in
Successful Trials, ms

Fixation Duration in
Failed Trials, ms

M14 Fly 1.4 	 0.3 72.8 	 7.5 4.7 	 0.3 185 	 17 221 	 47
M15 Fly 1.4 	 0.4 98.8 	 6.0 3.3 	 0.6 302 	 38 465 	 317
M15 Gabor (H) 6.1 	 0.7 49.0 	 13.1 5.1 	 0.7 351 	 45 321 	 81
M16 Gabor (H) 7.8 	 1.1 38.8 	 15.8 7.2 	 0.9 297 	 19 303 	 34
M16 Gabor (V) 6.1 	 1.2 75.2 	 19.0 5.4 	 0.8 316 	 11 275 	 49

Values are mean 	 SE. The trial duration is the entire duration from scene onset to scene offset. The success rate is the percentage of trials in which the monkey
successfully located the target. The number of saccades to find the target is given only for successful trials and includes the last, target-finding saccade. The
fixation duration is averaged across all saccades in successful and failed trials.

1336 FEF IN NATURAL SCENE SEARCH

J Neurophysiol • doi:10.1152/jn.01044.2015 • www.jn.org

 by 10.220.32.247 on O
ctober 31, 2016

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


because we did not have a sufficient number of failed trials for
reliable estimation of ROC curves.

Second, we asked whether the predictive power of visual
features (AUC) in a given session was correlated with search
performance (percentage of trials in which the monkey found
the target). We found a strong correlation between relevance
and search performance but only for the vertical Gabor search
task performed by M16, for which relevance was significantly
predictive of fixation choice (Table 3). Surprisingly, we did not
find such a correlation between energy and search performance
even though energy was predictive of fixation choice (Table 3).
This strongly suggests that whenever relevance has an effect on
fixation choice, it also has an effect on search performance.
Unlike relevance, energy predicts fixations but not search
performance. Thus, although energy is predictive of saccade
targets, it may be a bottom-up feature and therefore not an
important factor in feature-based attention.

Third, the natural distribution of saccade velocities is likely
to reflect the distribution of urgency with which the animal
selects fixations. If the peak velocities of saccades were cor-

related with relevance or energy, it would suggest that these
features influence the conscious choice of fixations. However,
we did not find any correlation between peak saccade velocity
and relevance or energy (on average across sessions and
animals, these correlations did not exceed 0.05; �0.05 �
Pearson’s r � 0.05).

Taken together, these behavioral analyses suggest that sa-
liency is not predictive, relevance is weakly but significantly
predictive, and energy is strongly predictive of fixation loca-
tions for a subset of animals and tasks. There appears to be no
correlation between behavioral parameters such as peak sac-
cadic velocity and visual features of saccade landings. Impor-
tantly, even though relevance was weakly predictive, when it
was predictive of saccade choice, its predictive power was
correlated with success rate of search behavior.

Based on the weak behavioral effect alone, it is still very
possible that the FEF could represent feature-based attention as
operationally defined by relevance. Indeed, cortical area V1
represents information such as visual contrast regardless of
whether such information directly informs behavioral choices.
Although prefrontal regions often relate to behavior (Miller et
al. 1996), it is possible that the FEF represents relevance to
consider and reject potential saccades to locations that are
similar to the target but not sufficiently similar as to warrant a
saccade. In such a circumstance, feature-based attention would
inform saccadic decisions but would not manifest in measur-
able fixation behavior, since saccades would only be made to
locations that have a very high target similarity. Therefore, it is
important to examine neural activity no matter the result of the
behavioral analysis.

Next, we asked which features best explain FEF activity
during natural scene search. We used a multiple-regression
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Fig. 5. Prediction of gaze using visual features at
fixation. We compared bottom-up IK-saliency, top-
down relevance, and energy at fixated (top left) and
nonfixated, i.e., shuffled control (top right) targets by
computing the area under the receiver operator char-
acteristic (ROC) curves (bottom). *Statistically sig-
nificant difference from a chance level of 0.5 at a
significance level of P � 0.05.

Table 3. Correlation between success rate and ROC values
across sessions

Animal Task
Relevance vs. Success

Rate
Energy vs. Success

Rate

M14 Fly �0.18 (0.52) �0.49 (0.06)
M15 Fly r � 0.21, P � 0.31 r � 0.32, P � 0.11
M15 Gabor (H) r � 0.14, P � 0.49 r � �0.02, P � 0.90
M16 Gabor (H) r � 0.20, P � 0.25 r � 0.21, P � 0.22
M16 Gabor (V) r � 0.96, P � 0.0001 r � 0.18, P � 0.60

ROC, receiver operating characteristics.

1337FEF IN NATURAL SCENE SEARCH

J Neurophysiol • doi:10.1152/jn.01044.2015 • www.jn.org

 by 10.220.32.247 on O
ctober 31, 2016

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


approach to model neural activity while monkeys performed a
target search task in natural scenes. More specifically, we used
the Poisson GLM framework to explain spiking events in terms
of behavior and task variables. We modeled spiking in terms of
visual feature maps of relevance and energy, in addition to
other features thought to be encoded by the FEF: upcoming eye
movements (as a proxy for spatial selection or planning), and
visual feature maps of saliency. In this way, we tested the
potential influence of feature-based attention on FEF activity
during natural scene search.

We found that some neurons appeared to be well explained
by a simple model of saccadic motor activity aligned to
saccade onsets, based on the direction of upcoming movement
alone (Fig. 6). Others initially appeared to be explained by a
simple model of relevant visual features alone, aligned to the
onset of fixation (Fig. 7).

Much previous work has characterized the activity of FEF
cells as movement-related or visually related using simple,
artificial stimuli, and tasks. Therefore, having first established
that univariate models can explain both visually related and
movement-related activity, we used our multiple-regression
approach to characterize neurons in the same way: to what
extent is the activity of FEF neurons predicted by upcoming
movement, relevance, or some combination thereof? We ad-

dressed this question by comparing univariate models of rele-
vance against multivariate models of relevance and movement
tuning. We found that although some neurons initially ap-
peared to encode relevant visual stimuli, an upcoming move-
ment was a better predictor of neural activity aligned to fixation
(example neuron in Fig. 8A). For most neurons, we found that
a relevance-only model was significantly improved by adding
a movement covariate (Fig. 8B, top), but a movement-only
model was not significantly improved by adding a relevance
covariate (Fig. 8B, bottom).

We formally quantified the predictive power of relevance
and movement using a relative pseudo-R2 analysis, which
compares a model leaving out the covariate of interest (either
relevance or movement) against a joint model comprising both
relevance and movement, as well as a full model comprising
additional covariates including bottom-up saliency, edge energy,
and self terms (see METHODS). We found that apparent tuning to
relevance (Table 4, #1) was progressively explained away when
compared against the joint model and the more comprehensive
full model (Table 4, #3 and #4). A nearly identical effect was
observed for edge energy (Table 4, #5 and #6). However, move-
ment does not get explained away when comparing a model that
left movement out against the joint model comprising relevance
and movement (Table 4, #2). Therefore, neural activity is corre-
lated with both saccades and relevant image patches, even though
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only one of the features (upcoming saccades) is truly encoded by
neural activity.

Although the GLM analysis convincingly suggests that
movement explains away any apparent effect of relevance or
energy, it may be limited by the specific assumptions of the
linear-nonlinear Poisson model. Therefore, we analyzed the
data using a more conventional technique by visualizing

PSTHs, only for the set of sessions for which relevance and
edge energy were maximally predictive of fixation choice
(M16, vertical Gabor search). Specifically, we computed pop-
ulation-averaged normalized PSTHs for saccades into the RF
(see METHODS), separated by the top and bottom 50% of rele-
vance (or energy) of saccade landings (Fig. 9, top). We also
computed these PSTHs for saccades out of the RF (see METH-
ODS), separated by the top and bottom 50% of relevance (or
energy) in the presaccadic RF (Fig. 9, bottom). We found no
significant firing rate differences between these saccades, sug-
gesting yet again that relevance and energy have no aggregate
effect on population FEF firing rates during natural scene
search.

In summary, we found that upcoming movements, rather
than relevant visual features, best explained neural activity in
many neurons examined across all tasks. Could this result
simply be due to a lack of statistical power? Neural represen-
tations of visual features are likely more complicated and
weaker in natural scenes than in simple, artificial scenes. To
address this possibility, we performed a power analysis based
on simulated neural data. In short, we used behavioral data
from a real experimental session to simulate many versions of
neural data with different modulatory influences. We then fit
this data with our model to ask if these influences were
detectable (see METHODS). We found that, even when the sim-
ulated modulation depth (relative increase in firing rate; see
METHODS) of relevance was low, we were able to detect its
influence on neural activity (Fig. 10A, green line). Therefore,
assuming our model of relevance representation is accurate, we
would be able to detect relevance representations even when
they were weak.

However, what if our model of relevance is not accurate?
The monkeys may use visual features to locate the target that
are similar but not identical to our convolution-based relevance
measure. To explore this issue, we performed two additional
power analyses to ask whether we could detect the influence of
relevance on neural activity. Both analyses make use of the
following approach: we use one set of covariates to simulate
the neural data and a different set of covariates to fit the model
to the data. This procedure mimics the situation in which we
have only approximate information about the relevance
model that the monkey is using. In the first analysis, we used
our standard relevance model covariates to simulate the
neural data but fit the model using relevance model covari-
ates that were corrupted with noise (see METHODS). Although
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Table 4. GLM analysis summary statistics

Animal Task
#1 (Rel-Only Model/Rel

Neurons)
#2 (Mvt 
 Rel Model/Mvt

Neurons)
#3 (Mvt 
 Rel

Model/Rel Neurons)
#4 (Full Model/Rel

Neurons)
#5 (Energy-Only

Model/Energy Neurons)
#6 (Full Model/Energy

Neurons)

M14 Fly (15) 5 9 0 0 4 0
M15 Fly (25) 8 8 1 0 8 0
M15 Gabor (H) (81) 57 55 1 1 54 1
M16 Gabor (H) (57) 24 25 1 0 28 3
M16 Gabor (V) (49) 23 24 1 0 22 1

Number of neurons that were significantly modulated by relevance, energy, or movement in different models. Neurons were deemed to be significantly tuned
if the 4� confidence intervals of the (relative) pseudo-R2s exceeded zero. We used a strict 4� threshold to sufficiently correct for multiple comparisons across
neurons and models. #1: number of significant neurons for the relevance-only model. #2: number of neurons significantly tuned for movement by comparing a
leave-movement-out model against a joint model with movement and relevance. #3: number of neurons significantly tuned for relevance by comparing
a leave-relevance-out model against a joint model with movement and relevance. #4: number of neurons significantly tuned for relevance by comparing a
leave-relevance-out model against a comprehensive full model (see text). #5: number of significant neurons for the energy-only model. #6: number of neurons
significantly tuned for energy by comparing a leave-energy-out model against a comprehensive full model (see text). GLM, generalized linear model.
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our ability to detect the influence of relevance was de-
creased, detection required a stronger modulation depth of
relevance, this modulation depth was still physiologically
plausible (Fig. 10A). For example, even when the correla-
tion between the relevance models for simulating and fitting
was only .5, we could detect relevance when its modulation
depth was �1.13 (compared with �1.08 when no noise was
added; Fig. 10A, red line).

In the second analysis, we used two qualitatively different
models for simulating and fitting the model. We simulated
neural data using edge energy (see METHODS for definition) and
fit the model using our convolution-based measure of rele-
vance. Although not identical, edge energy and relevance are
correlated (e.g., r � 0.61 for the Gabor search task), meaning
that we should nonetheless be able to detect its influence. Our
ability to detect relevance was indeed decreased, but not
beyond physiological plausibility. More specifically, we could
detect “relevance” when its modulation depth was �1.13, even
though a qualitatively different model (edge energy) produced
the data. Therefore, we find that our method of estimating the
influence of relevant visual features on neural activity is robust
to both weak effects and inaccurate models of relevance. Our
inability to find relevance representations in the real data
suggests that it is represented very weakly or that it is repre-
sented in a more complex manner than our bilinear spatiotem-
poral model can describe.

DISCUSSION

In this study, we used a modeling-based approach to analyze
the FEF of monkeys while they searched complex, natural
scenes. They searched for a target known ahead of time,
making it possible for them to guide their saccades using
target-similar features (task relevance). We then asked if FEF
reflected feature-based attention, i.e., whether neural activity
was explainable using task relevance and edge energy. We
found that FEF activity was explained primarily by upcoming
eye movements (a proxy for spatial selection or planning) and
not by task relevance (a proxy for feature-based attention), or
bottom-up influences such as saliency and energy.

Studies investigating the neural basis of feature-based atten-
tion have implicated the FEF in feature-based attention (e.g.,
Zhou and Desimone 2011). However, a recent study by the
same group (Bichot et al. 2015) implicates a relatively unex-
plored region (but see Kennerley and Wallis 2009) in the
prefrontal cortex, the VPA, as the primary source of feature-
based attention. They showed that pharmacologically inacti-
vating the VPA interfered with feature-based search behavior
and also eliminated the signature of feature-based attention in
FEF activity, while leaving the signature of spatial selection
unaffected. This revised understanding of the role of FEF in
attention may explain why we did not find a clear reflection of
feature-based attention in FEF activity.

Our study thus raises the question of how results from
simplified stimuli and tasks generalize to complex, natural
vision. Beginning with the pioneering studies of Bruce and
Goldberg (Goldberg and Bruce 1990; Bruce and Goldberg
1985, Bruce et al. 1985), many studies have implicated the FEF
in planning saccades (Schlag-Rey et al. 1992; Thompson et al.
1997; Murthy et al. 2001), employing covert attention (Zhou
and Desimone 2011; Moore and Fallah 2004), and selecting
salient (Thompson and Bichot 2005; Schall et al. 1995; Schall
and Thompson 1999) and task-relevant objects from distractors
(Schall and Hanes 1993). While these studies have provided
the foundation of our understanding about FEF function, they
have typically used simplified tasks (involving a single cued
saccade) in the context of artificial stimuli (that present limited
choices against a homogeneous background). By contrast,
natural scene search requires navigating hundreds or thousands
of distracting stimuli and often requires making tens of self-
initiated saccades. In support of these differences being impor-
tant, a recent study from our group found that FEF activity is
better explained by upcoming eye movements than visual
saliency (Fernandes et al. 2014). The current study extends this
work by examining the influence of top-down, rather than
bottom-up, visual features on FEF activity. A central compo-
nent of feature-based attention is a top-down bias for target-
like objects, which is exactly what we failed to detect. Our
study thus provides another line of evidence that FEF function
may differ in the context of natural behavior and stimuli.

One important limitation of this study is the weak effect of
relevant visual features on search behavior. The main implica-
tion of this weak effect is that if our relevance metric does not
accurately model the search strategy used by monkeys to plan
their saccades, then the brain may not reflect relevance. Al-
though we found that the predictive power of relevance on
search behavior varied across animals and tasks, relevance
failed to predict firing rate changes. Despite this, we found,
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Fig. 9. Relevance and edge energy do not modulate FEF firing rates around
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landing (top) or within the presaccadic receptive field (bottom), and calculated
the saccade (top)- or fixation (bottom)- aligned PSTHs for each neuron
separated in eight directional bins. To combine these across neurons, we then
selected the directional bin with highest peak firing rate to represent the
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METHODS).
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using simulations, that both noisy and incorrect definitions of
relevance in our model were able to estimate the simulated
effects on firing rates. Furthermore, despite this weak effect of
relevance, when monkeys used relevance to inform saccade
selection, they were more likely to be successful in finding the
target (Table 3). Therefore, it is important to test the possibility
that relevance modulates neural activity during saccade plan-
ning.

Our difficulty in predicting fixation choice with high accu-
racy suggests that better models of behavior are likely to be
more successful in discovering the role of FEF in feature-based
attention during naturalistic vision. However, even cutting-
edge behavioral models of gaze achieve modest predictive
power (for instance, see Borji et al. 2013 for a review of
contemporary saliency models; best AUC � 0.6). These num-
bers highlight the difficulty of modeling complex, natural
behaviors. Indeed, fixation choice is likely driven by many
factors beyond relevant and salient visual features. Further-
more, not all saccades in a natural scene are made to locations
that maximize immediate expected reward. Some saccades are
corrective saccades, bridging the discrepancy between in-
tended and current gaze locations in a sequence (Findlay 1982;
Zelinsky 2008; Zelinsky et al. 1997). Other saccades are
exploratory or information-gathering in intent, which are use-
ful to maximize long-term expected reward (Najemnik and
Geisler 2005; Gottlieb et al. 2013). These possibilities suggest
that improved behavioral models of gaze as well as improved

models of neural coding of behavioral variables might yield
more success in understanding the computational role of the
FEF during search. For example, more sophisticated models
could incorporate the need to balance exploring the scene with
exploiting particular image patches, or take into account the
shifting spatial spotlight of covert attention.

Recent studies with natural scenes, including our own (Bur-
man and Segraves 1994; Fernandes et al. 2014), have sug-
gested that FEF may not encode visual information that is not
targeted by an upcoming saccade. Such studies have called into
question the conventional understanding that FEF represents a
feature-based priority map. These findings need to be recon-
ciled with findings from artificial tasks. What explains the
discrepancy between results from artificial scenes and our
findings using natural scenes? One possible explanation arises
from the number of potential saccade targets in complex
natural stimuli. In artificial search tasks with few saccade
targets (typically fewer than 8), it may be possible to deploy
covert attention to all of them. Therefore, selecting the saccade
target based on its similarity to the search target is a feasible
strategy, and FEF activity might reflect this similarity. In
crowded natural scenes, by contrast, the space of possible
saccade targets is continuous (infinite). In these contexts, it
might only be feasible to attend to a local region around the
point of fixation using feature-based attention. If this were true,
the animal is more likely to be successful by making several
saccades to new areas to maximize the likelihood of finding the
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target within these parafoveal regions. Therefore, during nat-
ural scene search, FEF activity might primarily reflect spatially
selected saccade landings.

Another important discrepancy between artificial and natural
search tasks arises from the natural behavior elicited by our
tasks. Several studies with artificial stimuli have described an
evolution of FEF activity from stimulus selection to saccade
selection, suggesting distinct roles and classes of neurons in the
continuum between representing visual and movement vari-
ables (Sato and Schall 2003; Schall and Thompson 1999;
Schall et al. 1995). In our study, rather than holding fixation,
the monkeys were allowed to freely move their eyes to
locate targets. Hence, they are likely to immediately saccade
to a target (or relevant stimulus) once it is detected. This
means that target detection and making saccades to the
target are likely to be tightly coupled during natural behav-
ior. This close natural overlap between saccade decision and
execution makes it challenging to disambiguate neural ac-
tivity specifically related to each.

In summary, our results suggest that, during natural vision,
the FEF does not reflect feature-based attention. We emphasize
that upcoming eye movements explain away the effects of
visual features on FEF activity. It is not the case that we failed
to explain FEF activity, but rather that upcoming eye move-
ments provide a better explanation than task-relevant visual
features. These results suggest that FEF activity more closely
reflects movement than sensory variables during natural scene
search. They also expose an important need to develop better
models of gaze behavior during natural scene search. More
broadly, our study illustrates the complexity of understanding
the role of higher-order brain areas during unconstrained,
natural behaviors.
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